Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
Chemosphere. 2024 Jan;347:140709. doi: 10.1016/j.chemosphere.2023.140709. Epub 2023 Nov 15.
Creating light-harvesting heterojunctions as a photocatalyst is critical for efficiently treating organics-laden wastewater. Yet the materials stabilization and limited reusability hinder their practical applications. In this study, an S-scheme heterojunction in the Sn-based perovskite and g-CN (gCN) composite, supported on an activated carbon fiber (ACF) substrate, is developed for glyphosate (GLP) degradation under water under flow conditions. The reusable NiSnO-gCN/ACF photocatalyst was synthesized using a simple wet impregnation and calcination method. The supported photocatalyst achieved 99% GLP-removal at 4 mL/min water flowrate and 1.25 g/m of photocatalyst loading in ACF. The photocatalyst showed a stable structure and repeat photocatalytic performance across 5 cycles despite prolonged visible light exposure under flow conditions. The materials stability is attributed to the effective dispersion of NiSnO-gCN in ACF, preventing the photocatalyst from elution in water flow. Radical trapping experiment revealed the superoxide and hydroxyl radicals as the primary reactive species in the GLP-degradation pathway. A plausible S-scheme mechanism was proposed for heterojunction formation, based on the high resolution deconvoluted spectra of X-ray photoelectron spectroscopy and the radical trapping experimental results. The inexpensive Sn-based perovskite synthesized in this study is indicated as an alternative to Ti-based perovskites for wastewater remediation application.
作为光催化剂,构建光收集异质结对于高效处理含有有机物的废水至关重要。然而,材料的稳定性和有限的可重复使用性阻碍了它们的实际应用。在这项研究中,开发了一种基于 Sn 的钙钛矿和 g-CN(gCN)复合材料中的 S 型异质结,负载在活性炭纤维(ACF)基底上,用于在水流动条件下降解草甘膦(GLP)。可重复使用的 NiSnO-gCN/ACF 光催化剂是通过简单的湿浸渍和煅烧方法合成的。在 4 mL/min 的水流量和 1.25 g/m 的 ACF 中负载光催化剂的条件下,负载型光催化剂实现了 99%的 GLP 去除率。该光催化剂在流动条件下长时间暴露于可见光下,仍保持稳定的结构和重复的光催化性能,经过 5 次循环后仍保持稳定。材料的稳定性归因于 NiSnO-gCN 在 ACF 中的有效分散,防止了光催化剂在水流动中的洗脱。自由基捕获实验表明,超氧自由基和羟基自由基是 GLP 降解途径中的主要活性物质。根据 X 射线光电子能谱的高分辨率解卷积谱和自由基捕获实验结果,提出了一种合理的 S 型异质结形成机制。本研究中合成的廉价 Sn 基钙钛矿被认为是用于废水修复应用的 Ti 基钙钛矿的替代物。