Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA (G.B., N.S., S.P.); Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA (G.B.).
Electrical and Computer Engineering, University of Iowa, Iowa City, Iowa, USA (D.D.D.).
Acad Radiol. 2024 May;31(5):2041-2049. doi: 10.1016/j.acra.2023.10.044. Epub 2023 Nov 17.
Imaging-based differentiation between glioblastoma (GB) and brain metastases (BM) remains challenging. Our aim was to evaluate the performance of 3D-convolutional neural networks (CNN) to address this binary classification problem.
T1-CE, T2WI, and FLAIR 3D-segmented masks of 307 patients (157 GB and 150 BM) were generated post resampling, co-registration normalization and semi-automated 3D-segmentation and used for internal model development. Subsequent external validation was performed on 59 cases (27 GB and 32 BM) from another institution. Four different mask-sequence combinations were evaluated using area under the curve (AUC), precision, recall and F1-scores. Diagnostic performance of a neuroradiologist and a general radiologist, both without and with the model output available, was also assessed.
3D-model using the T1-CE tumor mask (TM) showed the highest performance [AUC 0.93 (95% CI 0.858-0.995)] on the external test set, followed closely by the model using T1-CE TM and FLAIR mask of peri-tumoral region (PTR) [AUC of 0.91 (95% CI 0.834-0.986)]. Models using T2WI masks showed robust performance on the internal dataset but lower performance on the external set. Both neuroradiologist and general radiologist showed improved performance with model output provided [AUC increased from 0.89 to 0.968 (p = 0.06) and from 0.78 to 0.965 (p = 0.007) respectively], the latter being statistically significant.
3D-CNNs showed robust performance for differentiating GB from BMs, with T1-CE TM, either alone or combined with FLAIR-PTR masks. Availability of model output significantly improved the accuracy of the general radiologist.
基于影像学的胶质母细胞瘤(GB)与脑转移瘤(BM)鉴别仍然具有挑战性。本研究旨在评估三维卷积神经网络(CNN)在解决这一二分类问题中的性能。
对 307 例患者(157 例 GB 和 150 例 BM)的 T1-CE、T2WI 和 FLAIR 三维分割掩模进行后重采样、配准归一化和半自动三维分割,并用于内部模型开发。随后在另一家机构的 59 例患者(27 例 GB 和 32 例 BM)中进行外部验证。评估了四种不同的掩模序列组合的曲线下面积(AUC)、精确率、召回率和 F1 评分。还评估了神经放射科医生和普通放射科医生在有无模型输出时的诊断性能。
在外部测试集上,使用 T1-CE 肿瘤掩模(TM)的 3D 模型显示出最高的性能(AUC 0.93(95%CI 0.858-0.995)),紧随其后的是使用 T1-CE TM 和肿瘤周围区域(PTR)FLAIR 掩模的模型(AUC 0.91(95%CI 0.834-0.986))。使用 T2WI 掩模的模型在内部数据集上表现稳健,但在外部数据集上的性能较低。神经放射科医生和普通放射科医生在提供模型输出时均表现出性能提高(AUC 分别从 0.89 增加到 0.968(p=0.06)和从 0.78 增加到 0.965(p=0.007)),后者具有统计学意义。
3D-CNN 对鉴别 GB 与 BM 具有良好的性能,T1-CE TM 单独使用或与 FLAIR-PTR 掩模联合使用均可。模型输出的可用性显著提高了普通放射科医生的准确性。