Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55902, USA.
Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center for the Engineering Arts and Sciences, Iowa City, IA 52242 USA.
J Neuroradiol. 2024 May;51(3):258-264. doi: 10.1016/j.neurad.2023.08.007. Epub 2023 Aug 29.
To determine if machine learning (ML) or deep learning (DL) pipelines perform better in AI-based three-class classification of glioblastoma (GBM), intracranial metastatic disease (IMD) and primary CNS lymphoma (PCNSL).
Retrospective analysis included 502 cases for training (208 GBM, 67 PCNSL and 227 IMD), with external validation on 86 cases (27:27:32). Multiparametric MRI images (T1W, T2W, FLAIR, DWI and T1-CE) were co-registered, resampled, denoised and intensity normalized, followed by semiautomatic 3D segmentation of the enhancing tumor (ET) and peritumoral region (PTR). Model performance was assessed using several ML pipelines and 3D-convolutional neural networks (3D-CNN) using sequence specific masks, as well as combination of masks. All pipelines were trained and evaluated with 5-fold nested cross-validation on internal data followed by external validation using multi-class AUC.
Two ML models achieved similar performance on test set, one using T2-ET and T2-PTR masks (AUC: 0.885, 95% CI: [0.816, 0.935] and another using T1-CE-ET and FLAIR-PTR mask (AUC: 0.878, CI: [0.804, 0.930]). The best performing DL models achieved an AUC of 0.854, (CI [0.774, 0.914]) on external data using T1-CE-ET and T2-PTR masks, followed by model derived from T1-CE-ET, ADC-ET and FLAIR-PTR masks (AUC: 0.851, CI [0.772, 0.909]).
Both ML and DL derived pipelines achieved similar performance. T1-CE mask was used in three of the top four overall models. Additionally, all four models had some mask derived from PTR, either T2WI or FLAIR.
确定机器学习 (ML) 或深度学习 (DL) 管道在基于人工智能的胶质母细胞瘤 (GBM)、颅内转移性疾病 (IMD) 和原发性中枢神经系统淋巴瘤 (PCNSL) 的三类分类中表现更好。
回顾性分析包括 502 例病例用于训练 (208 例 GBM、67 例 PCNSL 和 227 例 IMD),并对 86 例病例进行外部验证 (27:27:32)。多参数 MRI 图像 (T1W、T2W、FLAIR、DWI 和 T1-CE) 进行配准、重采样、去噪和强度归一化,然后对增强肿瘤 (ET) 和肿瘤周围区域 (PTR) 进行半自动 3D 分割。使用几种 ML 管道和 3D 卷积神经网络 (3D-CNN) 使用序列特定的掩模,以及掩模的组合,评估模型性能。所有管道都在内部数据上使用 5 折嵌套交叉验证进行训练和评估,然后使用多类 AUC 进行外部验证。
两个 ML 模型在测试集上的性能相似,一个使用 T2-ET 和 T2-PTR 掩模 (AUC:0.885,95%CI:[0.816,0.935],另一个使用 T1-CE-ET 和 FLAIR-PTR 掩模 (AUC:0.878,CI:[0.804,0.930])。在外部数据上,表现最好的 DL 模型使用 T1-CE-ET 和 T2-PTR 掩模获得了 0.854 的 AUC(CI[0.774,0.914]),其次是源自 T1-CE-ET、ADC-ET 和 FLAIR-PTR 掩模的模型 (AUC:0.851,CI[0.772,0.909])。
ML 和 DL 衍生的管道都取得了相似的性能。T1-CE 掩模在四个总体最佳模型中的三个中使用。此外,所有四个模型都有一些源自 PTR 的掩模,无论是 T2WI 还是 FLAIR。