Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
Department of Life Science & Biotechnology, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
J Biosci Bioeng. 2024 Jan;137(1):38-46. doi: 10.1016/j.jbiosc.2023.11.002. Epub 2023 Nov 17.
Paraburkholderia terrae strain KU-15 grows on 2- and 4-nitrobenzoate and 2- and 4-aminobenzoate (ABA) as the sole nitrogen and carbon sources. The genes responsible for the potential degradation of 2- and 4-nitrobenzoate and 2-ABA have been predicted from its genome sequence. In this study, we identified the pab operon in P. terrae strain KU-15. This operon is responsible for the 4-ABA degradation pathway, which involves the formation of a γ-glutamylated intermediate. Reverse transcription-polymerase chain reaction revealed that the pab operon was induced by 4-ABA. Herein, studying the deletion of pabA and pabB1 in strain KU-15 and the examining of Escherichia coli expressing the pab operon revealed the involvement of the operon in 4-ABA degradation. The first step of the degradation pathway is the formation of a γ-glutamylated intermediate, whereby 4-ABA is converted to γ-glutamyl-4-carboxyanilide (γ-GCA). Subsequently, γ-GCA is oxidized to protocatechuate. Overexpression of various genes in E. coli and purification of recombinant proteins permitted the functional characterization of relevant pathway proteins: PabA is a γ-GCA synthetase, PabB1-B3 functions in a multicomponent dioxygenase system responsible for γ-GCA dioxygenation, and PabC is a γ-GCA hydrolase that reverses the formation of γ-GCA by PabA.
伯克霍尔德氏菌(Paraburkholderia terrae)KU-15 菌株可以利用 2-和 4-硝基苯甲酸和 2-和 4-氨基苯甲酸(ABA)作为唯一氮源和碳源生长。从其基因组序列中预测到了负责潜在降解 2-和 4-硝基苯甲酸和 2-ABA 的基因。在本研究中,我们鉴定了 P. terrae 菌株 KU-15 中的 pab 操纵子。该操纵子负责 4-ABA 降解途径,其中涉及γ-谷氨酰化中间产物的形成。反转录聚合酶链式反应显示 pab 操纵子受 4-ABA 诱导。在此,通过研究 KU-15 菌株中 pabA 和 pabB1 的缺失以及表达 pab 操纵子的大肠杆菌的检测,发现该操纵子参与了 4-ABA 的降解。降解途径的第一步是形成γ-谷氨酰化中间产物,其中 4-ABA 转化为γ-谷氨酰-4-羧基苯胺(γ-GCA)。随后,γ-GCA 被氧化为原儿茶酸。在大肠杆菌中过度表达各种基因并纯化重组蛋白,使得相关途径蛋白的功能特征得以明确:PabA 是一种γ-GCA 合成酶,PabB1-B3 作为负责 γ-GCA 双加氧酶系统的多成分酶系统发挥作用,而 PabC 是一种 γ-GCA 水解酶,可逆转 PabA 形成的 γ-GCA。