Suppr超能文献

基于无人机的多时间序列数据的个体大白菜估重。

UAV-based individual Chinese cabbage weight prediction using multi-temporal data.

机构信息

Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.

Institute for Sustainable Agro-Ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Midoricho, Nishitokyo-shi, Tokyo, 188-0002, Japan.

出版信息

Sci Rep. 2023 Nov 17;13(1):20122. doi: 10.1038/s41598-023-47431-y.

Abstract

The use of unmanned aerial vehicles (UAVs) has facilitated crop canopy monitoring, enabling yield prediction by integrating regression models. However, the application of UAV-based data to individual-level harvest weight prediction is limited by the effectiveness of obtaining individual features. In this study, we propose a method that automatically detects and extracts multitemporal individual plant features derived from UAV-based data to predict harvest weight. We acquired data from an experimental field sown with 1196 Chinese cabbage plants, using two cameras (RGB and multi-spectral) mounted on UAVs. First, we used three RGB orthomosaic images and an object detection algorithm to detect more than 95% of the individual plants. Next, we used feature selection methods and five different multi-temporal resolutions to predict individual plant weights, achieving a coefficient of determination (R) of 0.86 and a root mean square error (RMSE) of 436 g/plant. Furthermore, we achieved predictions with an R greater than 0.72 and an RMSE less than 560 g/plant up to 53 days prior to harvest. These results demonstrate the feasibility of accurately predicting individual Chinese cabbage harvest weight using UAV-based data and the efficacy of utilizing multi-temporal features to predict plant weight more than one month prior to harvest.

摘要

无人机 (UAV) 的使用促进了作物冠层监测,通过整合回归模型,可以实现产量预测。然而,基于无人机的数据在个体收获重量预测中的应用受到获取个体特征的有效性的限制。在本研究中,我们提出了一种方法,该方法可以自动检测和提取基于无人机数据的多时相个体植物特征,以预测收获重量。我们从一个种植了 1196 株小白菜的实验田中获取数据,使用安装在无人机上的两个摄像头(RGB 和多光谱)。首先,我们使用三张 RGB 正射镶嵌图像和一个目标检测算法来检测超过 95%的个体植物。接下来,我们使用特征选择方法和五种不同的多时相分辨率来预测个体植物的重量,实现了 0.86 的决定系数 (R) 和 436 克/株的均方根误差 (RMSE)。此外,我们可以在收获前 53 天预测到 R 值大于 0.72 和 RMSE 值小于 560 克/株。这些结果表明,使用基于无人机的数据准确预测个体小白菜收获重量是可行的,并且利用多时相特征在收获前一个月以上预测植物重量是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验