Moradifar Parivash, Liu Yin, Shi Jiaojian, Siukola Thurston Matti Lawton, Utzat Hendrik, van Driel Tim B, Lindenberg Aaron M, Dionne Jennifer A
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States.
Chem Rev. 2023 Dec 13;123(23):12757-12794. doi: 10.1021/acs.chemrev.2c00917. Epub 2023 Nov 18.
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21 century.
量子材料正在传感、通信和计算领域引发一场技术革命,同时也在检验过去一个世纪的许多核心理论。诸如拓扑绝缘体、复杂氧化物、超导体、量子点、含色心半导体以及其他类型的强关联材料等,能够展现出诸如边缘导电性、多铁性、磁阻、超导性、单光子发射以及光自旋锁定等奇异特性。这些涌现特性的出现及其强烈依赖于材料详细的原子尺度结构,包括原子缺陷、掺杂剂和晶格堆积。在本综述中,我们描述了电子显微镜(EM)领域的进展,包括原位和在役电子显微镜,如何能够加速量子材料和量子激发方面的进步。我们首先描述基本的电子显微镜原理和操作模式。然后我们讨论各种电子显微镜方法,例如:(i)电子显微镜光谱学,包括电子能量损失谱(EELS)、阴极发光(CL)和电子能量增益谱(EEGS);(ii)四维扫描透射电子显微镜(4D-STEM);(iii)动态和超快电子显微镜(UEM);(iv)互补超快光谱学(UED、XFEL);以及(v)原子电子断层扫描(AET)。我们描述了这些方法如何能够在皮米尺度和飞秒时间分辨率下揭示量子材料中的结构-功能关系,以及它们如何实现原子缺陷的精确定位和量子材料的高分辨率操控。对于每种方法,我们还描述了在解决开放量子力学问题方面现有的局限性,以及如何可能解决这些局限性以加速进展。在众多显著成果中,我们的综述强调了电子显微镜如何能够实现量子缺陷三维结构的识别;测量量子激发的可逆和亚稳态动力学;绘制激子态和单光子发射图;测量纳米尺度的热输运和耦合激发动力学;以及测量量子异质界面的内部电场和电荷密度分布——所有这些都是在量子材料的固有原子和近原子长度尺度上进行的。我们通过描述未来的开放挑战来得出结论,包括实现用于超低温(低于10K)原子尺度空间分辨率的稳定样品架、能够实现毫电子伏特能量分辨率的稳定光谱仪,以及对磁场和自旋场的高分辨率动态映射。借助电子显微镜实现的原子操控和超快表征,量子材料将有望融入21世纪所需的许多可持续和节能技术之中。