LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal.
LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal.
Colloids Surf B Biointerfaces. 2024 Jan;233:113594. doi: 10.1016/j.colsurfb.2023.113594. Epub 2023 Oct 12.
The main challenges associated to the application of graphene-based materials (GBM) in phototherapy are obtaining particles with lateral nanoscale dimensions and water stability that present high near-infrared (NIR) absorption. Nanosized graphene oxide (GOn) is stable in aqueous dispersion, due to the oxygen functionalities on its surface, but possesses low photothermal efficiency in NIR region. GOn total reduction originates reduced nanographene oxide (rGOn) that presents high NIR absorption, but poor water stability. In this work, we produced a partially reduced nanographene oxide (p-rGOn) by GOn photoreduction using ultraviolet radiation (UV-C), yielding nanometric particles that preserve the original water stability, but acquire high light-to-heat conversion efficiency. GOn and p-rGOn presented mean particle sizes of 170 ± 81 nm and 188 ± 99 nm, respectively. 8 h of UV-C irradiation allowed to obtain a p-rGOn stable for up 6 months in water, with a zeta potential of -32.3 ± 1.3 mV. p-rGOn water dispersions have shown to absorb NIR radiation, reaching 52.7 °C (250 µg mL) after 30 min NIR irradiation. Chemical characterization of p-rGOn showed a decrease in the number of characteristic oxygen functional groups, confirming GOn partial reduction. Furthermore, p-rGOn (250 µg mL) didn't cause any cytotoxicity (ISO10993-5:2009(E)) towards human skin fibroblasts (HFF-1) and human skin keratinocytes (HaCat), after 24 and 48 h incubation. An innovative custom-built NIR LED-system has been developed and validated for p-rGOn photothermal effect evaluation. Finally, exposure to p-rGOn+NIR-LEDs has caused no cytotoxicity towards HFF-1 or HaCat cells, revealing its potential to be used as a safe therapy.
应用基于石墨烯的材料(GBM)在光疗中面临的主要挑战是获得具有横向纳米尺寸和水稳定性的颗粒,这些颗粒具有高近红外(NIR)吸收。由于其表面的含氧官能团,纳米氧化石墨烯(GOn)在水相中稳定,但在近红外区域的光热效率较低。GOn 的总还原源于还原纳米氧化石墨烯(rGOn),它具有高近红外吸收,但水稳定性差。在这项工作中,我们使用紫外线(UV-C)对 GOn 进行光还原,产生了具有原始水稳定性的纳米颗粒,但具有高光-热转换效率的部分还原纳米石墨烯(p-rGOn)。GOn 和 p-rGOn 的平均粒径分别为 170 ± 81nm 和 188 ± 99nm。8 小时的 UV-C 照射可获得在水中稳定长达 6 个月的 p-rGOn,其 zeta 电位为-32.3 ± 1.3mV。p-rGOn 水分散体显示出吸收近红外辐射的能力,在 30 分钟近红外辐射后达到 52.7°C(250μg mL)。p-rGOn 的化学表征表明,特征含氧官能团的数量减少,证实了 GOn 的部分还原。此外,p-rGOn(250μg mL)在 24 和 48 小时孵育后,对人皮肤成纤维细胞(HFF-1)和人皮肤角质形成细胞(HaCat)没有任何细胞毒性(ISO10993-5:2009(E))。已经开发并验证了一种用于评估 p-rGOn 光热效应的定制近红外 LED 系统。最后,p-rGOn+NIR-LEDs 的暴露对 HFF-1 或 HaCat 细胞没有细胞毒性,表明其有潜力用作安全治疗。