Suppr超能文献

开发并测试一款人工智能聊天机器人,以回答巴基斯坦看护者有关免疫接种的问题:一项混合方法研究。

Development and feasibility testing of an artificially intelligent chatbot to answer immunization-related queries of caregivers in Pakistan: A mixed-methods study.

机构信息

IRD Global, The Great Room, Level 10, One George Street, 049145, Singapore.

IRD Pakistan, 4th Floor Woodcraft Building, Korangi Creek, Karachi 75190, Pakistan.

出版信息

Int J Med Inform. 2024 Jan;181:105288. doi: 10.1016/j.ijmedinf.2023.105288. Epub 2023 Nov 8.

Abstract

BACKGROUND

Gaps in information access impede immunization uptake, especially in low-resource settings where cutting-edge and innovative digital interventions are limited given the digital inequity. Our objective was to develop an Artificially Intelligent (AI) chatbot to respond to caregiver's immunization-related queries in Pakistan and investigate its feasibility and acceptability in a low-resource, low-literacy setting.

METHODS

We developed Bablibot (Babybot), a local language immunization chatbot, using Natural Language Processing (NLP) and Machine Learning (ML) technologies with Human in the Loop feature. We evaluated the bot through a sequential mixed-methods study. We enrolled caregivers visiting the 12 selected immunization centers for routine childhood vaccines. Additional caregivers were reached through targeted text message communication. We assessed Bablibot's feasibility and acceptability by tracking user engagement and technological metrics, and through thematic analysis of in-depth interviews with 20 caregivers.

FINDINGS

Between March 9, 2020, and April 15, 2021, 2,202 caregivers were enrolled in the study, of which, 677 (30.7%) interacted with Bablibot (users). Bablibot responded to 1,877 messages through 874 conversations. Conversation topics included vaccination due dates (32.4%; 283/874), side-effect management (15.7%;137/874), or delaying vaccination due to child's illness or COVID-lockdown (16.8%;147/874). Over 90% (277/307) of responses to text-based exit surveys indicated satisfaction with Bablibot. Qualitative analysis showed caregivers appreciated Bablibot's usefulness and provided feedback for further improvement of the system.

CONCLUSION

Our results demonstrate the feasibility and acceptability of local-language NLP chatbots in providing real-time immunization information in low-resource settings. Text-based chatbots canminimize the workload on helpline operators, in addition to instantaneously resolving caregiver queries that otherwise lead to delay or default.

摘要

背景

信息获取方面的差距阻碍了免疫接种的开展,尤其是在资源匮乏的环境中,由于数字不平等,前沿创新的数字干预措施受到限制。我们的目标是开发一种人工智能(AI)聊天机器人,以回答巴基斯坦看护人有关免疫接种的问题,并研究其在资源匮乏、低识字率环境中的可行性和可接受性。

方法

我们使用自然语言处理(NLP)和机器学习(ML)技术以及人机交互功能,开发了 Bablibot(婴儿机器人)本地语言免疫接种聊天机器人。我们通过顺序混合方法研究评估了该机器人。我们招募了正在 12 个选定的免疫接种中心接受常规儿童疫苗接种的看护人。通过有针对性的短信通信,还联系了额外的看护人。我们通过跟踪用户参与度和技术指标,以及对 20 名看护人进行的深入访谈的主题分析,评估了 Bablibot 的可行性和可接受性。

结果

2020 年 3 月 9 日至 2021 年 4 月 15 日期间,共有 2202 名看护人参与了该研究,其中 677 名(30.7%)与 Bablibot 进行了互动(用户)。Bablibot 通过 874 次对话回复了 1877 条消息。对话主题包括疫苗接种截止日期(32.4%;283/874)、副作用管理(15.7%;137/874)或因儿童疾病或 COVID 封锁而延迟接种(16.8%;147/874)。超过 90%(277/307)的基于文本的退出调查回复表示对 Bablibot 满意。定性分析表明,看护人赞赏 Bablibot 的有用性,并为进一步改进系统提供了反馈。

结论

我们的研究结果表明,在资源匮乏的环境中,使用本地语言 NLP 聊天机器人提供实时免疫信息具有可行性和可接受性。基于文本的聊天机器人可以减轻热线操作员的工作量,并且可以即时解决看护人的问题,否则这些问题可能会导致延迟或取消接种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04c1/10750258/dfacd3721eba/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验