Suppr超能文献

基于贝叶斯 U-Net 的不确定性主动学习在多标签锥形束 CT 分割中的应用。

Uncertainty-based Active Learning by Bayesian U-Net for Multi-label Cone-beam CT Segmentation.

机构信息

School of Computing and Augmented Intelligence Arizona State University, Tempe, Arizona.

Department of Endodontics, University of Pennsylvania, Philadelphia, Pennsylvania.

出版信息

J Endod. 2024 Feb;50(2):220-228. doi: 10.1016/j.joen.2023.11.002. Epub 2023 Nov 17.

Abstract

INTRODUCTION

Training of Artificial Intelligence (AI) for biomedical image analysis depends on large annotated datasets. This study assessed the efficacy of Active Learning (AL) strategies training AI models for accurate multilabel segmentation and detection of periapical lesions in cone-beam CTs (CBCTs) using a limited dataset.

METHODS

Limited field-of-view CBCT volumes (n = 20) were segmented by clinicians (clinician segmentation [CS]) and Bayesian U-Net-based AL strategies. Two AL functions, Bayesian Active Learning by Disagreement [BALD] and Max_Entropy [ME], were used for multilabel segmentation ("Lesion"-"Tooth Structure"-"Bone"-"Restorative Materials"-"Background"), and compared to a non-AL benchmark Bayesian U-Net function. The training-to-testing set ratio was 4:1. Comparisons between the AL and Bayesian U-Net functions versus CS were made by evaluating the segmentation accuracy with the Dice indices and lesion detection accuracy. The Kruskal-Wallis test was used to assess statistically significant differences.

RESULTS

The final training set contained 26 images. After 8 AL iterations, lesion detection sensitivity was 84.0% for BALD, 76.0% for ME, and 32.0% for Bayesian U-Net, which was significantly different (P < .0001; H = 16.989). The mean Dice index for all labels was 0.680 ± 0.155 for Bayesian U-Net and 0.703 ± 0.166 for ME after eight AL iterations, compared to 0.601 ± 0.267 for Bayesian U-Net over the mean of all iterations. The Dice index for "Lesion" was 0.504 for BALD and 0.501 for ME after 8 AL iterations, and at a maximum 0.288 for Bayesian U-Net.

CONCLUSIONS

Both AL strategies based on uncertainty quantification from Bayesian U-Net BALD, and ME, provided improved segmentation and lesion detection accuracy for CBCTs. AL may contribute to reducing extensive labeling needs for training AI algorithms for biomedical image analysis in dentistry.

摘要

简介:医学影像分析的人工智能(AI)培训依赖于大型标注数据集。本研究评估了主动学习(AL)策略的效果,这些策略使用有限的数据集训练 AI 模型,以实现 CBCT 中根尖病变的准确多标签分割和检测。

方法:临床医生(临床医生分割 [CS])和基于贝叶斯 U-Net 的 AL 策略对有限视场 CBCT 容积(n=20)进行分割。使用两种 AL 函数,即基于不一致性的贝叶斯主动学习(BALD)和最大熵 [ME],进行多标签分割(“病变”-“牙齿结构”-“骨骼”-“修复材料”-“背景”),并与非 AL 基准贝叶斯 U-Net 函数进行比较。训练-测试集的比例为 4:1。通过使用 Dice 指数评估分割准确性和病变检测准确性,比较 AL 函数和贝叶斯 U-Net 函数与 CS 之间的差异。使用 Kruskal-Wallis 检验评估统计学显著差异。

结果:最终的训练集包含 26 张图像。经过 8 次 AL 迭代后,BALD 的病变检测灵敏度为 84.0%,ME 为 76.0%,贝叶斯 U-Net 为 32.0%,差异有统计学意义(P<0.0001;H=16.989)。经过 8 次 AL 迭代后,所有标签的平均 Dice 指数为贝叶斯 U-Net 的 0.680±0.155 和 ME 的 0.703±0.166,而经过所有迭代的贝叶斯 U-Net 的平均为 0.601±0.267。经过 8 次 AL 迭代后,BALD 和 ME 的“病变”Dice 指数分别为 0.504 和 0.501,而贝叶斯 U-Net 的最大值为 0.288。

结论:基于贝叶斯 U-Net 的不确定性量化的两种 AL 策略(BALD 和 ME)均提高了 CBCT 的分割和病变检测准确性。AL 可能有助于减少牙科中生物医学图像分析 AI 算法训练的广泛标注需求。

相似文献

7
8
Multi-model deep learning approach for segmentation of teeth and periapical lesions on pantomographs.多模态深度学习方法在全景片中牙齿和根尖病变的分割。
Oral Surg Oral Med Oral Pathol Oral Radiol. 2024 Jul;138(1):196-204. doi: 10.1016/j.oooo.2023.11.006. Epub 2023 Nov 26.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验