文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

线粒体过度融合通过改变电子传递链复合物 I 和 III 的活性来诱导肺内皮细胞的代谢重塑。

Mitochondrial hyperfusion induces metabolic remodeling in lung endothelial cells by modifying the activities of electron transport chain complexes I and III.

机构信息

Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.

Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA.

出版信息

Free Radic Biol Med. 2024 Jan;210:183-194. doi: 10.1016/j.freeradbiomed.2023.11.008. Epub 2023 Nov 17.


DOI:10.1016/j.freeradbiomed.2023.11.008
PMID:37979892
Abstract

OBJECTIVE: Pulmonary hypertension (PH) is a progressive disease with vascular remodeling as a critical structural alteration. We have previously shown that metabolic reprogramming is an early initiating mechanism in animal models of PH. This metabolic dysregulation has been linked to remodeling the mitochondrial network to favor fission. However, whether the mitochondrial fission/fusion balance underlies the metabolic reprogramming found early in PH development is unknown. METHODS: Utilizing a rat early model of PH, in conjunction with cultured pulmonary endothelial cells (PECs), we utilized metabolic flux assays, Seahorse Bioassays, measurements of electron transport chain (ETC) complex activity, fluorescent microscopy, and molecular approaches to investigate the link between the disruption of mitochondrial dynamics and the early metabolic changes that occur in PH. RESULTS: We observed increased fusion mediators, including Mfn1, Mfn2, and Opa1, and unchanged fission mediators, including Drp1 and Fis1, in a two-week monocrotaline-induced PH animal model (early-stage PH). We were able to establish a connection between increases in fusion mediator Mfn1 and metabolic reprogramming. Using an adenoviral expression system to enhance Mfn1 levels in pulmonary endothelial cells and utilizing C-glucose labeled substrate, we found increased production of C lactate and decreased TCA cycle metabolites, revealing a Warburg phenotype. The use of a C-glutamine substrate showed evidence that hyperfusion also induces oxidative carboxylation. The increase in glycolysis was linked to increased hypoxia-inducible factor 1α (HIF-1α) protein levels secondary to the disruption of cellular bioenergetics and higher levels of mitochondrial reactive oxygen species (mt-ROS). The elevation in mt-ROS correlated with attenuated ETC complexes I and III activities. Utilizing a mitochondrial-targeted antioxidant to suppress mt-ROS, limited HIF-1α protein levels, which reduced cellular glycolysis and reestablished mitochondrial membrane potential. CONCLUSIONS: Our data connects mitochondrial fusion-mediated mt-ROS to the Warburg phenotype in early-stage PH development.

摘要

目的:肺动脉高压(PH)是一种进行性疾病,其血管重构是一种关键的结构改变。我们之前已经表明,代谢重编程是 PH 动物模型中的早期起始机制。这种代谢失调与重塑线粒体网络以促进裂变有关。然而,在 PH 早期发展中发现的代谢重编程是否依赖于线粒体裂变/融合平衡尚不清楚。

方法:利用 PH 的大鼠早期模型,结合培养的肺内皮细胞(PECs),我们利用代谢通量测定、 Seahorse 生物测定、电子传递链(ETC)复合物活性测量、荧光显微镜和分子方法来研究线粒体动力学的破坏与 PH 中发生的早期代谢变化之间的联系。

结果:我们观察到融合介体(包括 Mfn1、Mfn2 和 Opa1)增加,而分裂介体(包括 Drp1 和 Fis1)不变,在两周的单克隆毒素诱导的 PH 动物模型(早期 PH)中。我们能够建立融合介体 Mfn1 增加与代谢重编程之间的联系。使用腺病毒表达系统增强肺内皮细胞中的 Mfn1 水平,并利用 C-葡萄糖标记的底物,我们发现 C-乳酸产量增加,三羧酸循环代谢物减少,揭示了沃伯格表型。使用 C-谷氨酰胺底物表明,超融合还会诱导氧化羧化作用。糖酵解的增加与细胞生物能量学的破坏和线粒体活性氧物质(mt-ROS)水平升高导致的缺氧诱导因子 1α(HIF-1α)蛋白水平升高有关。mt-ROS 的增加与 ETC 复合物 I 和 III 活性的降低相关。利用线粒体靶向抗氧化剂抑制 mt-ROS,可降低 HIF-1α 蛋白水平,减少细胞糖酵解并重建线粒体膜电位。

结论:我们的数据将线粒体融合介导的 mt-ROS 与早期 PH 发展中的沃伯格表型联系起来。

相似文献

[1]
Mitochondrial hyperfusion induces metabolic remodeling in lung endothelial cells by modifying the activities of electron transport chain complexes I and III.

Free Radic Biol Med. 2024-1

[2]
Novel Relationship between Mitofusin 2-Mediated Mitochondrial Hyperfusion, Metabolic Remodeling, and Glycolysis in Pulmonary Arterial Endothelial Cells.

Int J Mol Sci. 2023-12-15

[3]
Complex I dysfunction underlies the glycolytic switch in pulmonary hypertensive smooth muscle cells.

Redox Biol. 2015-12

[4]
Mitochondrial fission produces a Warburg effect via the oxidative inhibition of prolyl hydroxylase domain-2.

Redox Biol. 2025-4

[5]
Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer.

Free Radic Biol Med. 2021-7

[6]
Endothelial FIS1 DeSUMOylation Protects Against Hypoxic Pulmonary Hypertension.

Circ Res. 2023-9

[7]
Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension.

Circ Res. 2012-4-17

[8]
Nitration-mediated activation of the small GTPase RhoA stimulates cellular glycolysis through enhanced mitochondrial fission.

J Biol Chem. 2023-4

[9]
[Effect of moxibustion on cognitive function and hippocampal mitochondrial dynamics related proteins in rats with vascular dementia].

Zhen Ci Yan Jiu. 2025-3-25

[10]
Hyperoxia Causes Mitochondrial Fragmentation in Pulmonary Endothelial Cells by Increasing Expression of Pro-Fission Proteins.

Arterioscler Thromb Vasc Biol. 2018-2-1

引用本文的文献

[1]
Rewriting the vascular script: epigenetic modifiers as scribes of metabolic reprogramming in pulmonary hypertension.

J Mol Med (Berl). 2025-9-3

[2]
Emerging role of the TCA cycle and its metabolites in lung disease.

Front Physiol. 2025-8-15

[3]
Unlocking the secrets of glucose metabolism reprogramming: the role in pulmonary diseases.

Front Pharmacol. 2025-8-13

[4]
Metabolic Disturbances Involved in Cardiovascular Diseases: The Role of Mitochondrial Dysfunction, Altered Bioenergetics and Oxidative Stress.

Int J Mol Sci. 2025-7-15

[5]
c-Myc promotes metabolic reprogramming in pulmonary hypertension via the stimulation of glutaminolysis and the reductive tricarboxylic acid cycle.

Redox Biol. 2025-7-9

[6]
Interaction of ferroptosis and cuproptosis in the perspective of pulmonary hypertension.

Front Cardiovasc Med. 2025-6-26

[7]
Critical role of mitochondrial dynamics in chronic respiratory diseases and new therapeutic directions.

Chin Med J (Engl). 2025-8-5

[8]
Effects of sodium-glucose cotransport-2 inhibitors treatment in patients with pulmonary hypertension.

Ther Adv Respir Dis. 2025

[9]
Review on the Role of Mitochondrial Dysfunction in Septic Encephalopathy.

Cell Biochem Biophys. 2025-3

本文引用的文献

[1]
Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data.

Nat Protoc. 2022-8

[2]
Mitochondrial Fusion Protein Mfn2 and Its Role in Heart Failure.

Front Mol Biosci. 2021-5-7

[3]
Mitochondrial Dynamics: A Key Role in Neurodegeneration and a Potential Target for Neurodegenerative Disease.

Front Neurosci. 2021-4-12

[4]
Mitochondrial OMA1 and OPA1 as Gatekeepers of Organellar Structure/Function and Cellular Stress Response.

Front Cell Dev Biol. 2021-3-25

[5]
RAC1 nitration at Y IS involved in the endothelial barrier disruption associated with lipopolysaccharide-mediated acute lung injury.

Redox Biol. 2021-1

[6]
Comprehensive Isotopic Targeted Mass Spectrometry: Reliable Metabolic Flux Analysis with Broad Coverage.

Anal Chem. 2020-9-1

[7]
2,2',4,4'-tetrabromodiphenyl ether (BDE-47) induces wide metabolic changes including attenuated mitochondrial function and enhanced glycolysis in PC12 cells.

Ecotoxicol Environ Saf. 2020-6-16

[8]
TGF-β1 attenuates mitochondrial bioenergetics in pulmonary arterial endothelial cells via the disruption of carnitine homeostasis.

Redox Biol. 2020-9

[9]
Mitochondrial Fission Mediates Endothelial Inflammation.

Hypertension. 2020-7

[10]
Defective nucleotide-dependent assembly and membrane fusion in Mfn2 CMT2A variants improved by Bax.

Life Sci Alliance. 2020-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索