Suppr超能文献

k 带:k 空间中的一种新分割算法,用于颅骨剥离。

k-strip: A novel segmentation algorithm in k-space for the application of skull stripping.

机构信息

The Institute for AI in Medicine (IKIM), University Hospital Essen, Girardetstraße 2, Essen 45131, Germany; Otto-Hahn-Straße 4a, Department of Physics of the Technical University Dortmund, Dortmund 44227, Germany.

Otto-Hahn-Straße 4a, Department of Physics of the Technical University Dortmund, Dortmund 44227, Germany.

出版信息

Comput Methods Programs Biomed. 2024 Jan;243:107912. doi: 10.1016/j.cmpb.2023.107912. Epub 2023 Nov 4.

Abstract

BACKGROUND AND OBJECTIVE

We present a novel deep learning-based skull stripping algorithm for magnetic resonance imaging (MRI) that works directly in the information rich complex valued k-space.

METHODS

Using four datasets from different institutions with a total of around 200,000 MRI slices, we show that our network can perform skull-stripping on the raw data of MRIs while preserving the phase information which no other skull stripping algorithm is able to work with. For two of the datasets, skull stripping performed by HD-BET (Brain Extraction Tool) in the image domain is used as the ground truth, whereas the third and fourth dataset comes with per-hand annotated brain segmentations.

RESULTS

All four datasets were very similar to the ground truth (DICE scores of 92 %-99 % and Hausdorff distances of under 5.5 pixel). Results on slices above the eye-region reach DICE scores of up to 99 %, whereas the accuracy drops in regions around the eyes and below, with partially blurred output. The output of k-Strip often has smoothed edges at the demarcation to the skull. Binary masks are created with an appropriate threshold.

CONCLUSION

With this proof-of-concept study, we were able to show the feasibility of working in the k-space frequency domain, preserving phase information, with consistent results. Besides preserving valuable information for further diagnostics, this approach makes an immediate anonymization of patient data possible, already before being transformed into the image domain. Future research should be dedicated to discovering additional ways the k-space can be used for innovative image analysis and further workflows.

摘要

背景与目的

我们提出了一种新颖的基于深度学习的磁共振成像(MRI)颅骨剥离算法,该算法可直接在信息丰富的复数 k 空间中工作。

方法

使用来自四个不同机构的四个数据集,总共有大约 200000 个 MRI 切片,我们表明我们的网络可以对 MRI 的原始数据进行颅骨剥离,同时保留相位信息,这是其他颅骨剥离算法无法处理的。对于两个数据集,在图像域中使用 HD-BET(脑提取工具)进行颅骨剥离作为ground truth,而第三个和第四个数据集则具有手动标注的脑分割。

结果

所有四个数据集都非常接近 ground truth(DICE 分数为 92%-99%,Hausdorff 距离小于 5.5 像素)。眼部以上切片的结果达到了 99%的 DICE 分数,而在眼部周围和下方的区域,由于部分输出模糊,准确性下降。k-Strip 的输出在与颅骨的边界处通常具有平滑的边缘。使用适当的阈值创建二进制掩模。

结论

通过这项概念验证研究,我们能够展示在 k 空间频域中工作、保留相位信息的可行性,并获得一致的结果。除了保留对进一步诊断有价值的信息外,这种方法还可以在将数据转换为图像域之前,立即对患者数据进行匿名化处理。未来的研究应致力于发现 k 空间可用于创新的图像分析和进一步工作流程的其他方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验