文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

单对比度卷积神经网络模型使用八对比度磁共振图像进行颅骨剥离的准确性。

Accuracy of skull stripping in a single-contrast convolutional neural network model using eight-contrast magnetic resonance images.

机构信息

Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.

Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.

出版信息

Radiol Phys Technol. 2023 Sep;16(3):373-383. doi: 10.1007/s12194-023-00728-z. Epub 2023 Jun 8.


DOI:10.1007/s12194-023-00728-z
PMID:37291372
Abstract

In automated analyses of brain morphometry, skull stripping or brain extraction is a critical first step because it provides accurate spatial registration and signal-intensity normalization. Therefore, it is imperative to develop an ideal skull-stripping method in the field of brain image analysis. Previous reports have shown that convolutional neural network (CNN) method is better at skull stripping than non-CNN methods. We aimed to evaluate the accuracy of skull stripping in a single-contrast CNN model using eight-contrast magnetic resonance (MR) images. A total of 12 healthy participants and 12 patients with a clinical diagnosis of unilateral Sturge-Weber syndrome were included in our study. A 3-T MR imaging system and QRAPMASTER were used for data acquisition. We obtained eight-contrast images produced by post-processing T1, T2, and proton density (PD) maps. To evaluate the accuracy of skull stripping in our CNN method, gold-standard intracranial volume (ICV) masks were used to train the CNN model. The ICV masks were defined by experts using manual tracing. The accuracy of the intracranial volume obtained from the single-contrast CNN model (ICV) was evaluated using the Dice similarity coefficient [= 2(ICV ⋂ ICV)/(ICV + ICV)]. Our study showed significantly higher accuracy in the PD-weighted image (WI), phase-sensitive inversion recovery (PSIR), and PD-short tau inversion recovery (STIR) compared to the other three contrast images (T1-WI, T2-fluid-attenuated inversion recovery [FLAIR], and T1-FLAIR). In conclusion, PD-WI, PSIR, and PD-STIR should be used instead of T1-WI for skull stripping in the CNN models.

摘要

在自动脑形态计量分析中,颅骨剥离或脑提取是至关重要的第一步,因为它提供了准确的空间配准和信号强度归一化。因此,在脑图像分析领域开发一种理想的颅骨剥离方法是当务之急。先前的报告表明,卷积神经网络(CNN)方法比非 CNN 方法更擅长颅骨剥离。我们旨在评估单对比度 CNN 模型在使用 8 种对比度磁共振(MR)图像进行颅骨剥离的准确性。本研究共纳入 12 名健康受试者和 12 名单侧斯特奇-韦伯综合征的临床诊断患者。使用 3T MR 成像系统和 QRAPMASTER 进行数据采集。我们获得了通过 T1、T2 和质子密度(PD)图后处理生成的 8 种对比度图像。为了评估我们的 CNN 方法中颅骨剥离的准确性,使用金标准颅内体积(ICV)掩模来训练 CNN 模型。ICV 掩模由专家使用手动追踪定义。使用 Dice 相似系数[=2(ICV ⋂ ICV)/(ICV+ICV)]评估单对比度 CNN 模型(ICV)获得的颅内体积的准确性。我们的研究表明,与其他三种对比图像(T1-WI、T2 液体衰减反转恢复[FLAIR]和 T1-FLAIR)相比,PD 加权图像(WI)、相位敏感反转恢复(PSIR)和 PD 短 tau 反转恢复(STIR)的准确性显著更高。总之,在 CNN 模型中,PD-WI、PSIR 和 PD-STIR 应该代替 T1-WI 用于颅骨剥离。

相似文献

[1]
Accuracy of skull stripping in a single-contrast convolutional neural network model using eight-contrast magnetic resonance images.

Radiol Phys Technol. 2023-9

[2]
Effect of changing the analyzed image contrast on the accuracy of intracranial volume extraction using Brain Extraction Tool 2.

Radiol Phys Technol. 2020-3

[3]
Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.

Artif Intell Med. 2019-7-23

[4]
Robust skull stripping using multiple MR image contrasts insensitive to pathology.

Neuroimage. 2017-2-1

[5]
A multi-view pyramid network for skull stripping on neonatal T1-weighted MRI.

Magn Reson Imaging. 2019-8-16

[6]
A general skull stripping of multiparametric brain MRIs using 3D convolutional neural network.

Sci Rep. 2022-6-27

[7]
Deep Learning for Automatic Differential Diagnosis of Primary Central Nervous System Lymphoma and Glioblastoma: Multi-Parametric Magnetic Resonance Imaging Based Convolutional Neural Network Model.

J Magn Reson Imaging. 2021-9

[8]
Automated identification of piglet brain tissue from MRI images using Region-based Convolutional Neural Networks.

PLoS One. 2023

[9]
Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images.

Med Phys. 2019-2-28

[10]
Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.

Neuroimage. 2016-4-1

本文引用的文献

[1]
Advantages of Using Both Voxel- and Surface-based Morphometry in Cortical Morphology Analysis: A Review of Various Applications.

Magn Reson Med Sci. 2022-3-1

[2]
Comparison of Two-Dimensional- and Three-Dimensional-Based U-Net Architectures for Brain Tissue Classification in One-Dimensional Brain CT.

Front Comput Neurosci. 2022-1-10

[3]
3D U-Net Improves Automatic Brain Extraction for Isotropic Rat Brain Magnetic Resonance Imaging Data.

Front Neurosci. 2021-12-16

[4]
Convolutional Neural Net Learning Can Achieve Production-Level Brain Segmentation in Structural Magnetic Resonance Imaging.

Front Neurosci. 2021-6-21

[5]
Assessing the Accuracy and Reproducibility of PARIETAL: A Deep Learning Brain Extraction Algorithm.

J Magn Reson Imaging. 2024-6

[6]
Improved Segmentation of the Intracranial and Ventricular Volumes in Populations with Cerebrovascular Lesions and Atrophy Using 3D CNNs.

Neuroinformatics. 2021-10

[7]
Automated joint skull-stripping and segmentation with Multi-Task U-Net in large mouse brain MRI databases.

Neuroimage. 2021-4-1

[8]
Estimation of intracranial volume: A comparative study between synthetic MRI and FSL-brain extraction tool (BET)2.

J Clin Neurosci. 2020-9

[9]
Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation.

Cancer Imaging. 2020-8-1

[10]
Skull-Stripping of Glioblastoma MRI Scans Using 3D Deep Learning.

Brainlesion. 2019-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索