Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan.
Radiol Phys Technol. 2023 Sep;16(3):373-383. doi: 10.1007/s12194-023-00728-z. Epub 2023 Jun 8.
In automated analyses of brain morphometry, skull stripping or brain extraction is a critical first step because it provides accurate spatial registration and signal-intensity normalization. Therefore, it is imperative to develop an ideal skull-stripping method in the field of brain image analysis. Previous reports have shown that convolutional neural network (CNN) method is better at skull stripping than non-CNN methods. We aimed to evaluate the accuracy of skull stripping in a single-contrast CNN model using eight-contrast magnetic resonance (MR) images. A total of 12 healthy participants and 12 patients with a clinical diagnosis of unilateral Sturge-Weber syndrome were included in our study. A 3-T MR imaging system and QRAPMASTER were used for data acquisition. We obtained eight-contrast images produced by post-processing T1, T2, and proton density (PD) maps. To evaluate the accuracy of skull stripping in our CNN method, gold-standard intracranial volume (ICV) masks were used to train the CNN model. The ICV masks were defined by experts using manual tracing. The accuracy of the intracranial volume obtained from the single-contrast CNN model (ICV) was evaluated using the Dice similarity coefficient [= 2(ICV ⋂ ICV)/(ICV + ICV)]. Our study showed significantly higher accuracy in the PD-weighted image (WI), phase-sensitive inversion recovery (PSIR), and PD-short tau inversion recovery (STIR) compared to the other three contrast images (T1-WI, T2-fluid-attenuated inversion recovery [FLAIR], and T1-FLAIR). In conclusion, PD-WI, PSIR, and PD-STIR should be used instead of T1-WI for skull stripping in the CNN models.
在自动脑形态计量分析中,颅骨剥离或脑提取是至关重要的第一步,因为它提供了准确的空间配准和信号强度归一化。因此,在脑图像分析领域开发一种理想的颅骨剥离方法是当务之急。先前的报告表明,卷积神经网络(CNN)方法比非 CNN 方法更擅长颅骨剥离。我们旨在评估单对比度 CNN 模型在使用 8 种对比度磁共振(MR)图像进行颅骨剥离的准确性。本研究共纳入 12 名健康受试者和 12 名单侧斯特奇-韦伯综合征的临床诊断患者。使用 3T MR 成像系统和 QRAPMASTER 进行数据采集。我们获得了通过 T1、T2 和质子密度(PD)图后处理生成的 8 种对比度图像。为了评估我们的 CNN 方法中颅骨剥离的准确性,使用金标准颅内体积(ICV)掩模来训练 CNN 模型。ICV 掩模由专家使用手动追踪定义。使用 Dice 相似系数[=2(ICV ⋂ ICV)/(ICV+ICV)]评估单对比度 CNN 模型(ICV)获得的颅内体积的准确性。我们的研究表明,与其他三种对比图像(T1-WI、T2 液体衰减反转恢复[FLAIR]和 T1-FLAIR)相比,PD 加权图像(WI)、相位敏感反转恢复(PSIR)和 PD 短 tau 反转恢复(STIR)的准确性显著更高。总之,在 CNN 模型中,PD-WI、PSIR 和 PD-STIR 应该代替 T1-WI 用于颅骨剥离。
Artif Intell Med. 2019-7-23
Magn Reson Imaging. 2019-8-16
Front Neurosci. 2021-12-16
J Magn Reson Imaging. 2024-6
Cancer Imaging. 2020-8-1
Brainlesion. 2019-10