Suppr超能文献

相似文献

1
Robust skull stripping using multiple MR image contrasts insensitive to pathology.
Neuroimage. 2017 Feb 1;146:132-147. doi: 10.1016/j.neuroimage.2016.11.017. Epub 2016 Nov 15.
2
Skull stripping based on region growing for magnetic resonance brain images.
Neuroimage. 2009 Oct 1;47(4):1394-407. doi: 10.1016/j.neuroimage.2009.04.047. Epub 2009 Apr 21.
3
Robust skull stripping of clinical glioblastoma multiforme data.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):659-66. doi: 10.1007/978-3-642-23626-6_81.
4
Robust brain extraction across datasets and comparison with publicly available methods.
IEEE Trans Med Imaging. 2011 Sep;30(9):1617-34. doi: 10.1109/TMI.2011.2138152.
5
Multi-atlas tool for automated segmentation of brain gray matter nuclei and quantification of their magnetic susceptibility.
Neuroimage. 2019 May 1;191:337-349. doi: 10.1016/j.neuroimage.2019.02.016. Epub 2019 Feb 7.
6
A multi-view pyramid network for skull stripping on neonatal T1-weighted MRI.
Magn Reson Imaging. 2019 Nov;63:70-79. doi: 10.1016/j.mri.2019.08.025. Epub 2019 Aug 16.
7
SynthStrip: skull-stripping for any brain image.
Neuroimage. 2022 Oct 15;260:119474. doi: 10.1016/j.neuroimage.2022.119474. Epub 2022 Jul 13.
8
A Deep Learning Framework for Skull Stripping in Brain MRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340846.
9
Robust Skull-Stripping Segmentation Based on Irrational Mask for Magnetic Resonance Brain Images.
J Digit Imaging. 2015 Dec;28(6):738-47. doi: 10.1007/s10278-015-9776-6.
10
Accuracy of skull stripping in a single-contrast convolutional neural network model using eight-contrast magnetic resonance images.
Radiol Phys Technol. 2023 Sep;16(3):373-383. doi: 10.1007/s12194-023-00728-z. Epub 2023 Jun 8.

引用本文的文献

2
Synthetic data in generalizable, learning-based neuroimaging.
Imaging Neurosci (Camb). 2024 Nov 19;2:1-22. doi: 10.1162/imag_a_00337. eCollection 2024 Nov 1.
6
Stroke Lesion Segmentation and Deep Learning: A Comprehensive Review.
Bioengineering (Basel). 2024 Jan 17;11(1):86. doi: 10.3390/bioengineering11010086.
7
Deep-learning model for diagnostic clue: detecting the dural tail sign for meningiomas on contrast-enhanced T1 weighted images.
Quant Imaging Med Surg. 2023 Dec 1;13(12):8132-8143. doi: 10.21037/qims-23-114. Epub 2023 Nov 3.
8
AUTOMATED VENTRICLE PARCELLATION AND EVAN'S RATIO COMPUTATION IN PRE- AND POST-SURGICAL VENTRICULOMEGALY.
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230729. Epub 2023 Sep 1.
9
RAPID BRAIN MENINGES SURFACE RECONSTRUCTION WITH LAYER TOPOLOGY GUARANTEE.
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230668. Epub 2023 Sep 1.
10
Weakly Supervised Skull Stripping of Magnetic Resonance Imaging of Brain Tumor Patients.
Front Neuroimaging. 2022 Apr 25;1:832512. doi: 10.3389/fnimg.2022.832512. eCollection 2022.

本文引用的文献

1
Example Based Lesion Segmentation.
Proc SPIE Int Soc Opt Eng. 2014 Feb 15;9034. doi: 10.1117/12.2043917. Epub 2014 Mar 21.
2
Effects of Spatial Resolution on Image Registration.
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9784. doi: 10.1117/12.2217322. Epub 2016 Mar 21.
3
Longitudinal Patch-Based Segmentation of Multiple Sclerosis White Matter Lesions.
Mach Learn Med Imaging. 2015 Oct;9352:194-202. doi: 10.1007/978-3-319-24888-2_24. Epub 2015 Oct 2.
5
Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.
Neuroimage. 2016 Apr 1;129:460-469. doi: 10.1016/j.neuroimage.2016.01.024. Epub 2016 Jan 22.
6
MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans.
Comput Intell Neurosci. 2015;2015:813696. doi: 10.1155/2015/813696. Epub 2015 Dec 2.
7
Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation.
IEEE J Biomed Health Inform. 2015 Sep;19(5):1598-609. doi: 10.1109/JBHI.2015.2439242.
8
Brain Extraction Using Label Propagation and Group Agreement: Pincram.
PLoS One. 2015 Jul 10;10(7):e0129211. doi: 10.1371/journal.pone.0129211. eCollection 2015.
9
Rotation-invariant multi-contrast non-local means for MS lesion segmentation.
Neuroimage Clin. 2015 May 13;8:376-89. doi: 10.1016/j.nicl.2015.05.001. eCollection 2015.
10
MR image synthesis by contrast learning on neighborhood ensembles.
Med Image Anal. 2015 Aug;24(1):63-76. doi: 10.1016/j.media.2015.05.002. Epub 2015 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验