Suppr超能文献

使用对病变不敏感的多个磁共振图像对比度进行稳健的颅骨剥离。

Robust skull stripping using multiple MR image contrasts insensitive to pathology.

作者信息

Roy Snehashis, Butman John A, Pham Dzung L

机构信息

Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, United States.

Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, United States; Diagnostic Radiology Department, National Institute of Health, United States.

出版信息

Neuroimage. 2017 Feb 1;146:132-147. doi: 10.1016/j.neuroimage.2016.11.017. Epub 2016 Nov 15.

Abstract

Automatic skull-stripping or brain extraction of magnetic resonance (MR) images is often a fundamental step in many neuroimage processing pipelines. The accuracy of subsequent image processing relies on the accuracy of the skull-stripping. Although many automated stripping methods have been proposed in the past, it is still an active area of research particularly in the context of brain pathology. Most stripping methods are validated on T-w MR images of normal brains, especially because high resolution T-w sequences are widely acquired and ground truth manual brain mask segmentations are publicly available for normal brains. However, different MR acquisition protocols can provide complementary information about the brain tissues, which can be exploited for better distinction between brain, cerebrospinal fluid, and unwanted tissues such as skull, dura, marrow, or fat. This is especially true in the presence of pathology, where hemorrhages or other types of lesions can have similar intensities as skull in a T-w image. In this paper, we propose a sparse patch based Multi-cONtrast brain STRipping method (MONSTR), where non-local patch information from one or more atlases, which contain multiple MR sequences and reference delineations of brain masks, are combined to generate a target brain mask. We compared MONSTR with four state-of-the-art, publicly available methods: BEaST, SPECTRE, ROBEX, and OptiBET. We evaluated the performance of these methods on 6 datasets consisting of both healthy subjects and patients with various pathologies. Three datasets (ADNI, MRBrainS, NAMIC) are publicly available, consisting of 44 healthy volunteers and 10 patients with schizophrenia. Other three in-house datasets, comprising 87 subjects in total, consisted of patients with mild to severe traumatic brain injury, brain tumors, and various movement disorders. A combination of T-w, T-w were used to skull-strip these datasets. We show significant improvement in stripping over the competing methods on both healthy and pathological brains. We also show that our multi-contrast framework is robust and maintains accurate performance across different types of acquisitions and scanners, even when using normal brains as atlases to strip pathological brains, demonstrating that our algorithm is applicable even when reference segmentations of pathological brains are not available to be used as atlases.

摘要

磁共振(MR)图像的自动颅骨剥离或脑提取通常是许多神经图像处理流程中的基本步骤。后续图像处理的准确性依赖于颅骨剥离的准确性。尽管过去已经提出了许多自动剥离方法,但它仍然是一个活跃的研究领域,特别是在脑病理学背景下。大多数剥离方法是在正常大脑的T加权MR图像上进行验证的,尤其是因为高分辨率T加权序列被广泛采集,并且正常大脑的地面真相手动脑掩码分割是公开可用的。然而,不同的MR采集协议可以提供有关脑组织的补充信息,这可以用于更好地区分脑、脑脊液和不需要的组织,如颅骨、硬脑膜、骨髓或脂肪。在存在病理学的情况下尤其如此,其中出血或其他类型的病变在T加权图像中可能具有与颅骨相似的强度。在本文中,我们提出了一种基于稀疏补丁的多对比度脑剥离方法(MONSTR),其中来自一个或多个图谱的非局部补丁信息(包含多个MR序列和脑掩码的参考描绘)被组合以生成目标脑掩码。我们将MONSTR与四种最先进的公开可用方法进行了比较:BEaST、SPECTRE、ROBEX和OptiBET。我们在由健康受试者和患有各种病理学疾病的患者组成的6个数据集上评估了这些方法的性能。三个数据集(ADNI、MRBrainS、NAMIC)是公开可用的,由44名健康志愿者和10名精神分裂症患者组成。其他三个内部数据集总共包括87名受试者,由轻度至重度创伤性脑损伤、脑肿瘤和各种运动障碍患者组成。使用T加权、T加权的组合对这些数据集进行颅骨剥离。我们表明,在健康和病理大脑上,与竞争方法相比,剥离有显著改进。我们还表明,我们的多对比度框架是稳健的,并且在不同类型的采集和扫描仪中保持准确的性能,即使使用正常大脑作为图谱来剥离病理大脑,这表明即使没有病理大脑的参考分割可用作图谱,我们的算法也是适用的。

相似文献

1
Robust skull stripping using multiple MR image contrasts insensitive to pathology.
Neuroimage. 2017 Feb 1;146:132-147. doi: 10.1016/j.neuroimage.2016.11.017. Epub 2016 Nov 15.
2
Skull stripping based on region growing for magnetic resonance brain images.
Neuroimage. 2009 Oct 1;47(4):1394-407. doi: 10.1016/j.neuroimage.2009.04.047. Epub 2009 Apr 21.
3
Robust skull stripping of clinical glioblastoma multiforme data.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):659-66. doi: 10.1007/978-3-642-23626-6_81.
4
Robust brain extraction across datasets and comparison with publicly available methods.
IEEE Trans Med Imaging. 2011 Sep;30(9):1617-34. doi: 10.1109/TMI.2011.2138152.
5
Multi-atlas tool for automated segmentation of brain gray matter nuclei and quantification of their magnetic susceptibility.
Neuroimage. 2019 May 1;191:337-349. doi: 10.1016/j.neuroimage.2019.02.016. Epub 2019 Feb 7.
6
A multi-view pyramid network for skull stripping on neonatal T1-weighted MRI.
Magn Reson Imaging. 2019 Nov;63:70-79. doi: 10.1016/j.mri.2019.08.025. Epub 2019 Aug 16.
7
SynthStrip: skull-stripping for any brain image.
Neuroimage. 2022 Oct 15;260:119474. doi: 10.1016/j.neuroimage.2022.119474. Epub 2022 Jul 13.
8
A Deep Learning Framework for Skull Stripping in Brain MRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340846.
9
Robust Skull-Stripping Segmentation Based on Irrational Mask for Magnetic Resonance Brain Images.
J Digit Imaging. 2015 Dec;28(6):738-47. doi: 10.1007/s10278-015-9776-6.
10
Accuracy of skull stripping in a single-contrast convolutional neural network model using eight-contrast magnetic resonance images.
Radiol Phys Technol. 2023 Sep;16(3):373-383. doi: 10.1007/s12194-023-00728-z. Epub 2023 Jun 8.

引用本文的文献

2
Synthetic data in generalizable, learning-based neuroimaging.
Imaging Neurosci (Camb). 2024 Nov 19;2:1-22. doi: 10.1162/imag_a_00337. eCollection 2024 Nov 1.
6
Stroke Lesion Segmentation and Deep Learning: A Comprehensive Review.
Bioengineering (Basel). 2024 Jan 17;11(1):86. doi: 10.3390/bioengineering11010086.
7
Deep-learning model for diagnostic clue: detecting the dural tail sign for meningiomas on contrast-enhanced T1 weighted images.
Quant Imaging Med Surg. 2023 Dec 1;13(12):8132-8143. doi: 10.21037/qims-23-114. Epub 2023 Nov 3.
8
AUTOMATED VENTRICLE PARCELLATION AND EVAN'S RATIO COMPUTATION IN PRE- AND POST-SURGICAL VENTRICULOMEGALY.
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230729. Epub 2023 Sep 1.
9
RAPID BRAIN MENINGES SURFACE RECONSTRUCTION WITH LAYER TOPOLOGY GUARANTEE.
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230668. Epub 2023 Sep 1.
10
Weakly Supervised Skull Stripping of Magnetic Resonance Imaging of Brain Tumor Patients.
Front Neuroimaging. 2022 Apr 25;1:832512. doi: 10.3389/fnimg.2022.832512. eCollection 2022.

本文引用的文献

1
Example Based Lesion Segmentation.
Proc SPIE Int Soc Opt Eng. 2014 Feb 15;9034. doi: 10.1117/12.2043917. Epub 2014 Mar 21.
2
Effects of Spatial Resolution on Image Registration.
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9784. doi: 10.1117/12.2217322. Epub 2016 Mar 21.
3
Longitudinal Patch-Based Segmentation of Multiple Sclerosis White Matter Lesions.
Mach Learn Med Imaging. 2015 Oct;9352:194-202. doi: 10.1007/978-3-319-24888-2_24. Epub 2015 Oct 2.
5
Deep MRI brain extraction: A 3D convolutional neural network for skull stripping.
Neuroimage. 2016 Apr 1;129:460-469. doi: 10.1016/j.neuroimage.2016.01.024. Epub 2016 Jan 22.
6
MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans.
Comput Intell Neurosci. 2015;2015:813696. doi: 10.1155/2015/813696. Epub 2015 Dec 2.
7
Subject-Specific Sparse Dictionary Learning for Atlas-Based Brain MRI Segmentation.
IEEE J Biomed Health Inform. 2015 Sep;19(5):1598-609. doi: 10.1109/JBHI.2015.2439242.
8
Brain Extraction Using Label Propagation and Group Agreement: Pincram.
PLoS One. 2015 Jul 10;10(7):e0129211. doi: 10.1371/journal.pone.0129211. eCollection 2015.
9
Rotation-invariant multi-contrast non-local means for MS lesion segmentation.
Neuroimage Clin. 2015 May 13;8:376-89. doi: 10.1016/j.nicl.2015.05.001. eCollection 2015.
10
MR image synthesis by contrast learning on neighborhood ensembles.
Med Image Anal. 2015 Aug;24(1):63-76. doi: 10.1016/j.media.2015.05.002. Epub 2015 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验