Zhao Yize, Chang Changgee, Zhang Jingwen, Zhang Zhengwu
Department of Biostatistics, Yale University.
Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania.
J Am Stat Assoc. 2023;118(543):1473-1487. doi: 10.1080/01621459.2022.2156349. Epub 2023 Feb 6.
With distinct advantages in power over behavioral phenotypes, brain imaging traits have become emerging endophenotypes to dissect molecular contributions to behaviors and neuropsychiatric illnesses. Among different imaging features, brain structural connectivity (i.e., structural connectome) which summarizes the anatomical connections between different brain regions is one of the most cutting edge while under-investigated traits; and the genetic influence on the structural connectome variation remains highly elusive. Relying on a landmark imaging genetics study for young adults, we develop a biologically plausible brain network response shrinkage model to comprehensively characterize the relationship between high dimensional genetic variants and the structural connectome phenotype. Under a unified Bayesian framework, we accommodate the topology of brain network and biological architecture within the genome; and eventually establish a mechanistic mapping between genetic biomarkers and the associated brain sub-network units. An efficient expectation-maximization algorithm is developed to estimate the model and ensure computing feasibility. In the application to the Human Connectome Project Young Adult (HCP-YA) data, we establish the genetic underpinnings which are highly interpretable under functional annotation and brain tissue eQTL analysis, for the brain white matter tracts connecting the hippocampus and two cerebral hemispheres. We also show the superiority of our method in extensive simulations.
脑成像特征在解释行为表型的分子机制方面具有独特优势,已成为剖析行为和神经精神疾病分子机制的新兴内表型。在不同的成像特征中,总结不同脑区之间解剖连接的脑结构连接性(即结构连接组)是最前沿但研究不足的特征之一;而基因对结构连接组变异的影响仍然非常难以捉摸。基于一项针对年轻人的具有里程碑意义的成像遗传学研究,我们开发了一种生物学上合理的脑网络响应收缩模型,以全面描述高维基因变异与结构连接组表型之间的关系。在统一的贝叶斯框架下,我们考虑了脑网络的拓扑结构和基因组内的生物学结构;最终在基因生物标志物与相关脑子网单元之间建立了机制映射。开发了一种高效的期望最大化算法来估计模型并确保计算的可行性。在应用于人类连接组计划青年成人(HCP-YA)数据时,我们为连接海马体和两个大脑半球的脑白质束建立了在功能注释和脑组织eQTL分析下具有高度可解释性的遗传基础。我们还在广泛的模拟中展示了我们方法的优越性。