Suppr超能文献

多状态脑功能连接与青少年神经认知的异质性分析

Heterogeneity Analysis on Multi-state Brain Functional Connectivity and Adolescent Neurocognition.

作者信息

Wang Shiying, Constable Todd, Zhang Heping, Zhao Yize

机构信息

Department of Biostatistics, Yale University, New Haven, CT.

Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT.

出版信息

J Am Stat Assoc. 2024;119(546):851-863. doi: 10.1080/01621459.2024.2311363. Epub 2024 Mar 8.

Abstract

Brain functional connectivity or connectome, a unique measure for brain functional organization, provides a great potential to explain the neurobiological underpinning of behavioral profiles. Existing connectome-based analyses highly concentrate on brain activities under a single cognitive state, and fail to consider heterogeneity when attempting to characterize brain-to-behavior relationships. In this work, we study the complex impact of multi-state functional connectivity on behaviors by analyzing the data from a recent landmark brain development and child health study. We propose a nonparametric, Bayesian supervised heterogeneity analysis to uncover neurodevelopmental subtypes with distinct effect mechanisms. We impose stochastic block structures to identify network-based functional phenotypes and develop a variational expectation-maximization algorithm to facilitate an efficient posterior computation. Through integrating resting-state and task-related functional connectomes, we dissect heterogeneous effect mechanisms on children's fluid intelligence from the functional network phenotypes including Fronto-parietal Network and Default Mode Network under different cognitive states. Based on extensive simulations, we further confirm the superior performance of our method on uncovering brain-to-behavior relationships.

摘要

脑功能连接或连接组,作为一种用于脑功能组织的独特测量方法,为解释行为特征的神经生物学基础提供了巨大潜力。现有的基于连接组的分析高度集中于单一认知状态下的脑活动,并且在试图刻画脑与行为关系时未能考虑异质性。在这项工作中,我们通过分析来自最近一项具有里程碑意义的脑发育与儿童健康研究的数据,研究多状态功能连接对行为的复杂影响。我们提出一种非参数贝叶斯监督异质性分析方法,以揭示具有不同作用机制的神经发育亚型。我们施加随机块结构来识别基于网络的功能表型,并开发一种变分期望最大化算法以促进高效的后验计算。通过整合静息态和任务相关的功能连接组,我们从包括不同认知状态下的额顶叶网络和默认模式网络在内的功能网络表型中剖析对儿童流体智力的异质性作用机制。基于广泛的模拟,我们进一步证实了我们的方法在揭示脑与行为关系方面的卓越性能。

相似文献

4
Genetic underpinnings of brain structural connectome for young adults.年轻成年人脑结构连接组的遗传基础
J Am Stat Assoc. 2023;118(543):1473-1487. doi: 10.1080/01621459.2022.2156349. Epub 2023 Feb 6.
9
Graph theory approach for the structural-functional brain connectome of depression.基于图论的抑郁症结构-功能脑连接组学研究。
Prog Neuropsychopharmacol Biol Psychiatry. 2021 Dec 20;111:110401. doi: 10.1016/j.pnpbp.2021.110401. Epub 2021 Jul 12.

本文引用的文献

4
Tucker Tensor Regression and Neuroimaging Analysis.塔克张量回归与神经影像分析
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.
8
Resting-state network topology and planning ability in healthy adults.健康成年人的静息态网络拓扑和规划能力。
Brain Struct Funct. 2020 Jan;225(1):365-374. doi: 10.1007/s00429-019-02004-6. Epub 2019 Dec 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验