Wang Shiying, Constable Todd, Zhang Heping, Zhao Yize
Department of Biostatistics, Yale University, New Haven, CT.
Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT.
J Am Stat Assoc. 2024;119(546):851-863. doi: 10.1080/01621459.2024.2311363. Epub 2024 Mar 8.
Brain functional connectivity or connectome, a unique measure for brain functional organization, provides a great potential to explain the neurobiological underpinning of behavioral profiles. Existing connectome-based analyses highly concentrate on brain activities under a single cognitive state, and fail to consider heterogeneity when attempting to characterize brain-to-behavior relationships. In this work, we study the complex impact of multi-state functional connectivity on behaviors by analyzing the data from a recent landmark brain development and child health study. We propose a nonparametric, Bayesian supervised heterogeneity analysis to uncover neurodevelopmental subtypes with distinct effect mechanisms. We impose stochastic block structures to identify network-based functional phenotypes and develop a variational expectation-maximization algorithm to facilitate an efficient posterior computation. Through integrating resting-state and task-related functional connectomes, we dissect heterogeneous effect mechanisms on children's fluid intelligence from the functional network phenotypes including Fronto-parietal Network and Default Mode Network under different cognitive states. Based on extensive simulations, we further confirm the superior performance of our method on uncovering brain-to-behavior relationships.
脑功能连接或连接组,作为一种用于脑功能组织的独特测量方法,为解释行为特征的神经生物学基础提供了巨大潜力。现有的基于连接组的分析高度集中于单一认知状态下的脑活动,并且在试图刻画脑与行为关系时未能考虑异质性。在这项工作中,我们通过分析来自最近一项具有里程碑意义的脑发育与儿童健康研究的数据,研究多状态功能连接对行为的复杂影响。我们提出一种非参数贝叶斯监督异质性分析方法,以揭示具有不同作用机制的神经发育亚型。我们施加随机块结构来识别基于网络的功能表型,并开发一种变分期望最大化算法以促进高效的后验计算。通过整合静息态和任务相关的功能连接组,我们从包括不同认知状态下的额顶叶网络和默认模式网络在内的功能网络表型中剖析对儿童流体智力的异质性作用机制。基于广泛的模拟,我们进一步证实了我们的方法在揭示脑与行为关系方面的卓越性能。