Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.
Nat Commun. 2024 Mar 4;15(1):1962. doi: 10.1038/s41467-024-46023-2.
Myelinated axons form long-range connections that enable rapid communication between distant brain regions, but how genetics governs the strength and organization of these connections remains unclear. We perform genome-wide association studies of 206 structural connectivity measures derived from diffusion magnetic resonance imaging tractography of 26,333 UK Biobank participants, each representing the density of myelinated connections within or between a pair of cortical networks, subcortical structures or cortical hemispheres. We identify 30 independent genome-wide significant variants after Bonferroni correction for the number of measures studied (126 variants at nominal genome-wide significance) implicating genes involved in myelination (SEMA3A), neurite elongation and guidance (NUAK1, STRN, DPYSL2, EPHA3, SEMA3A, HGF, SHTN1), neural cell proliferation and differentiation (GMNC, CELF4, HGF), neuronal migration (CCDC88C), cytoskeletal organization (CTTNBP2, MAPT, DAAM1, MYO16, PLEC), and brain metal transport (SLC39A8). These variants have four broad patterns of spatial association with structural connectivity: some have disproportionately strong associations with corticothalamic connectivity, interhemispheric connectivity, or both, while others are more spatially diffuse. Structural connectivity measures are highly polygenic, with a median of 9.1 percent of common variants estimated to have non-zero effects on each measure, and exhibited signatures of negative selection. Structural connectivity measures have significant genetic correlations with a variety of neuropsychiatric and cognitive traits, indicating that connectivity-altering variants tend to influence brain health and cognitive function. Heritability is enriched in regions with increased chromatin accessibility in adult oligodendrocytes (as well as microglia, inhibitory neurons and astrocytes) and multiple fetal cell types, suggesting that genetic control of structural connectivity is partially mediated by effects on myelination and early brain development. Our results indicate pervasive, pleiotropic, and spatially structured genetic control of white-matter structural connectivity via diverse neurodevelopmental pathways, and support the relevance of this genetic control to healthy brain function.
有髓轴突形成长程连接,使大脑不同区域之间能够快速通讯,但遗传因素如何控制这些连接的强度和组织仍然不清楚。我们对 26333 名英国生物库参与者的扩散磁共振成像轨迹得出的 206 种结构连通性测量进行了全基因组关联研究,每个测量都代表了一对皮质网络、皮质下结构或皮质半球内或之间的髓鞘化连接的密度。在对所研究的测量数量进行 Bonferroni 校正(126 个变异达到名义全基因组显著性)后,我们确定了 30 个独立的全基因组显著变异,这些变异涉及髓鞘形成(SEMA3A)、轴突伸长和导向(NUAK1、STRN、DPYSL2、EPHA3、SEMA3A、HGF、SHTN1)、神经细胞增殖和分化(GMNC、CELF4、HGF)、神经元迁移(CCDC88C)、细胞骨架组织(CTTNBP2、MAPT、DAAM1、MYO16、PLEC)和脑金属转运(SLC39A8)的基因。这些变异与结构连通性有四种广泛的空间关联模式:有些与皮质丘脑连接、半球间连接或两者都有不成比例的强关联,而另一些则更具空间弥散性。结构连通性测量具有高度多基因性,中位数有 9.1%的常见变异估计对每个测量都有非零影响,并且表现出负选择的特征。结构连通性测量与多种神经精神和认知特征具有显著的遗传相关性,表明改变连接的变异往往会影响大脑健康和认知功能。在成年少突胶质细胞(以及小胶质细胞、抑制性神经元和星形胶质细胞)和多种胎儿细胞类型中,染色质可及性增加的区域存在丰富的遗传相关性,这表明结构连通性的遗传控制部分是通过对髓鞘形成和早期大脑发育的影响来介导的。我们的研究结果表明,通过多种神经发育途径,广泛存在、多效性和空间结构的遗传控制白质结构连通性,并支持这种遗传控制对健康大脑功能的相关性。