Suppr超能文献

基于 EEGNet 的多源域滤波器用于脑机接口迁移学习。

EEGNet-based multi-source domain filter for BCI transfer learning.

机构信息

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin, China.

Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin, China.

出版信息

Med Biol Eng Comput. 2024 Mar;62(3):675-686. doi: 10.1007/s11517-023-02967-z. Epub 2023 Nov 20.

Abstract

Deep learning has great potential on decoding EEG in brain-computer interface. While common deep learning algorithms cannot directly train models with data from multiple individuals because of the inter-individual differences in EEG. Collecting enough data for each subject to satisfy the training of deep learning would result in an increase in training cost. This study proposes a novel transfer learning, EEGNet-based multi-source domain filter for transfer learning (EEGNet-MDFTL), to reduce the amount of training data and improve the performance of BCI. The EEGNet-MDFTL uses bagging ensemble learning to learn domain-invariant features from the multi-source domain and utilizes model loss value to filter the multi-source domain. Compared with baseline methods, the accuracy of the EEGNet-MDFTL reaches 91.96%, higher than two state-of-the-art methods, which demonstrates source domain filter can select similar source domains to improve the accuracy of the model, and remains a high level even when the data amount is reduced to 1/8, proving that ensemble learning learns enough domain invariant features from the multi-source domain to make the model insensitive to data amount. The proposed EEGNet-MDFTL is effective in improving the decoding performance with a small amount of data, which is helpful to save the BCI training cost.

摘要

深度学习在脑机接口的 EEG 解码方面具有巨大的潜力。然而,由于 EEG 个体间的差异,常见的深度学习算法无法直接使用来自多个个体的数据进行模型训练。为了满足深度学习的训练需求,为每个个体收集足够的数据将导致训练成本的增加。本研究提出了一种新颖的基于迁移学习的 EEGNet 多源域滤波器(EEGNet-MDFTL),以减少训练数据的数量并提高 BCI 的性能。EEGNet-MDFTL 使用装袋集成学习从多源域中学习域不变特征,并利用模型损失值对多源域进行过滤。与基线方法相比,EEGNet-MDFTL 的准确率达到 91.96%,高于两种最先进的方法,这表明源域滤波器可以选择相似的源域来提高模型的准确性,并且即使数据量减少到 1/8 时仍然保持高水平,证明集成学习从多源域中学习到足够的域不变特征,使模型对数据量不敏感。提出的 EEGNet-MDFTL 可以有效地提高少量数据的解码性能,有助于节省 BCI 的训练成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验