Suppr超能文献

一种用于运动想象脑机接口解码的强健多分支多注意力机制 EEGNet。

A robust multi-branch multi-attention-mechanism EEGNet for motor imagery BCI decoding.

机构信息

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300132, China; Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin 300132, China; Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300132, China; School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300132, China.

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300132, China; Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin 300132, China; Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300132, China; School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300132, China.

出版信息

J Neurosci Methods. 2024 May;405:110108. doi: 10.1016/j.jneumeth.2024.110108. Epub 2024 Mar 6.

Abstract

BACKGROUND

Motor-Imagery-based Brain-Computer Interface (MI-BCI) is a promising technology to assist communication, movement, and neurological rehabilitation for motor-impaired individuals. Electroencephalography (EEG) decoding techniques using deep learning (DL) possess noteworthy advantages due to automatic feature extraction and end-to-end learning. However, the DL-based EEG decoding models tend to show large variations due to intersubject variability of EEG, which results from inconsistencies of different subjects' optimal hyperparameters.

NEW METHODS

This study proposes a multi-branch multi-attention mechanism EEGNet model (MBMANet) for robust decoding. It applies the multi-branch EEGNet structure to achieve various feature extractions. Further, the different attention mechanisms introduced in each branch attain diverse adaptive weight adjustments. This combination of multi-branch and multi-attention mechanisms allows for multi-level feature fusion to provide robust decoding for different subjects.

RESULTS

The MBMANet model has a four-classification accuracy of 83.18% and kappa of 0.776 on the BCI Competition IV-2a dataset, which outperforms other eight CNN-based decoding models. This consistently satisfactory performance across all nine subjects indicates that the proposed model is robust.

CONCLUSIONS

The combine of multi-branch and multi-attention mechanisms empowers the DL-based models to adaptively learn different EEG features, which provides a feasible solution for dealing with data variability. It also gives the MBMANet model more accurate decoding of motion intentions and lower training costs, thus improving the MI-BCI's utility and robustness.

摘要

背景

基于运动想象的脑机接口(MI-BCI)是一种有前途的技术,可以帮助运动障碍者进行交流、运动和神经康复。基于深度学习(DL)的脑电图(EEG)解码技术由于自动特征提取和端到端学习具有显著优势。然而,基于 DL 的 EEG 解码模型往往由于 EEG 的个体间可变性而表现出很大的差异,这是由于不同个体的最佳超参数不一致造成的。

新方法

本研究提出了一种用于稳健解码的多分支多注意机制 EEGNet 模型(MBMANet)。它应用多分支 EEGNet 结构来实现各种特征提取。此外,每个分支中引入的不同注意机制实现了不同的自适应权重调整。多分支和多注意机制的结合允许进行多层次特征融合,从而为不同的个体提供稳健的解码。

结果

MBMANet 模型在 BCI 竞赛 IV-2a 数据集上的四分类准确率为 83.18%,kappa 值为 0.776,优于其他八个基于 CNN 的解码模型。在所有九个受试者中均表现出一致的令人满意的性能,表明所提出的模型具有稳健性。

结论

多分支和多注意机制的结合使基于 DL 的模型能够自适应地学习不同的 EEG 特征,为处理数据变异性提供了一种可行的解决方案。它还使 MBMANet 模型能够更准确地解码运动意图,并降低训练成本,从而提高 MI-BCI 的实用性和稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验