College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
Anal Chem. 2023 Dec 5;95(48):17920-17927. doi: 10.1021/acs.analchem.3c04304. Epub 2023 Nov 20.
We demonstrate for the first time the construction of a dual-mode biosensor for electrochemiluminescent (ECL) and electrochemical chiral recognition of l- and d-isomers of amino acids, with ferrocene (Fc) as both a signal enhancer and a signal tracer. With the dissolved oxygen as a coreactant, ZnInS acts as the ECL emitter to generate a weak cathodic ECL signal. Fc can enter into the β-cyclodextrin (β-CD) cavity on ZnInS-modified electrode as a result of host-guest interaction. Since Fc can promote HO and O to produce abundant reactive oxygen species (ROS) (e.g., O and OH), the ECL signal of ZnInS can be further amplified with Fc as a coreaction accelerator. Meanwhile, Fc molecules on the β-CD/ZnInS-modified electrode can be electrochemically oxidized to Fc to produce a remarkable oxidation peak current. When l-histidine (l-His) is present, the matching of the l-His configuration with the β-CD cavity leads to the entrance of more l-His into the cavity of β-CD than d-histidine (d-His), and the subsequent competence of l-His with Fc on the Fc/β-CD/ZnInS-modified electrode induces the decrease in both Fc peak current and ZnInS-induced ECL intensity. This dual-mode biosensor can efficiently discriminate l-His from d-His, and it can sensitively monitor l-His with a detection limit of 7.60 pM for ECL mode and 3.70 pM for electrochemical mode. Moreover, this dual-mode biosensor can selectively discriminate l-His from other l- and d-isomers (e.g., threonine, phenylalanine, and glutamic acid), with potential applications in the chiral recognition of nonelectroactive chiral compounds, bioanalysis, and disease diagnosis.
我们首次构建了一种用于电致化学发光(ECL)和电化学手性识别 l-和 d-型氨基酸对映异构体的双模生物传感器,其中二茂铁(Fc)既作为信号增强剂,又作为信号示踪剂。以溶解氧为共反应物,ZnInS 作为 ECL 发射器产生较弱的阴极 ECL 信号。由于主客体相互作用,Fc 可以进入 ZnInS 修饰电极上的β-环糊精(β-CD)空腔。由于 Fc 可以促进 HO 和 O 产生丰富的活性氧物种(例如 O 和 OH),因此 Fc 可以作为共反应加速剂进一步放大 ZnInS 的 ECL 信号。同时,β-CD/ZnInS 修饰电极上的 Fc 分子可以电化学氧化为 Fc,产生显著的氧化峰电流。当存在 l-组氨酸(l-His)时,l-His 的构型与β-CD 空腔的匹配导致更多的 l-His 进入β-CD 空腔,而 d-组氨酸(d-His)则进入较少,随后 l-His 与 Fc 在 Fc/β-CD/ZnInS 修饰电极上的竞争导致 Fc 峰电流和 ZnInS 诱导的 ECL 强度均降低。该双模生物传感器可以有效地从 d-His 中区分出 l-His,并且可以通过 ECL 模式检测限为 7.60 pM,电化学模式检测限为 3.70 pM 来灵敏地监测 l-His。此外,该双模生物传感器可以选择性地区分 l-His 与其他 l-和 d-异构体(例如苏氨酸、苯丙氨酸和谷氨酸),有望在手性识别非电活性手性化合物、生物分析和疾病诊断中得到应用。