Suppr超能文献

基于机器学习驱动的G-四链体圆偏振发光材料。

Machine-Learning-Driven G-Quartet-Based Circularly Polarized Luminescence Materials.

作者信息

Dai Yankai, Zhang Zhiwei, Wang Dong, Li Tianliang, Ren Yuze, Chen Jingqi, Feng Lingyan

机构信息

Materials Genome Institute, Shanghai University, Shanghai, 200444, China.

Shanghai Engineering Research Center of Organ Repair, ShanghaiUniversity, Shanghai, 200444, China.

出版信息

Adv Mater. 2024 Jan;36(4):e2310455. doi: 10.1002/adma.202310455. Epub 2023 Nov 27.

Abstract

Circularly polarized luminescence (CPL) materials have garnered significant interest due to their potential applications in chiral functional devices. Synthesizing CPL materials with a high dissymmetry factor (g ) remains a significant challenge. Inspired by efficient machine learning (ML) applications in scientific research, this work demonstrates ML-based techniques for the first time to guide the synthesis of G-quartet-based CPL gels with high g values and multiple chiral regulation strategies. Employing an "experiment-prediction-verification" approach, this work devises a ML classification and regression model for the solvothermal synthesis of G-quartet gels in deep eutectic solvents. This process illustrates the relationship between various synthesis parameters and the g value. The decision tree algorithm demonstrates superior performance across six ML models, with model accuracy and determination coefficients amounting to 0.97 and 0.96, respectively. The screened CPL gels exhibiting a g value up to 0.15 are obtained through combined ML guidance and experimental verification, among the highest ones reported till now for biomolecule-based CPL systems. These findings indicate that ML can streamline the rational design of chiral nanomaterials, thereby expediting their further development.

摘要

圆偏振发光(CPL)材料因其在手性功能器件中的潜在应用而备受关注。合成具有高不对称因子(g)的CPL材料仍然是一项重大挑战。受科学研究中高效机器学习(ML)应用的启发,这项工作首次展示了基于ML的技术,以指导具有高g值和多种手性调控策略的基于G-四链体的CPL凝胶的合成。采用“实验-预测-验证”方法,这项工作为在深共晶溶剂中溶剂热合成G-四链体凝胶设计了一个ML分类和回归模型。这个过程阐明了各种合成参数与g值之间的关系。决策树算法在六个ML模型中表现出卓越性能,模型准确率和决定系数分别达到0.97和0.96。通过ML指导与实验验证相结合,获得了g值高达0.15的筛选CPL凝胶,这是迄今为止基于生物分子的CPL系统中报道的最高值之一。这些发现表明,ML可以简化手性纳米材料的合理设计,从而加速其进一步发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验