Fu Meng, Luo Jinghong, Shi Bo, Tu Shuchen, Wang Zihao, Yu Changlin, Ma Zequn, Chen Xingyuan, Li Xiangming
School of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
Angew Chem Int Ed Engl. 2024 Jan 8;63(2):e202316346. doi: 10.1002/anie.202316346. Epub 2023 Dec 1.
Piezocatalytic hydrogen peroxide (H O ) production is a green synthesis method, but the rapid complexation of charge carriers in piezocatalysts and the difficulty of adsorbing substrates limit its performance. Here, metal-organic cage-coated gold nanoparticles are anchored on graphitic carbon nitride (MOC-AuNP/g-C N ) via hydrogen bond to serve as the multifunctional sites for efficient H O production. Experiments and theoretical calculations prove that MOC-AuNP/g-C N simultaneously optimize three key parts of piezocatalytic H O production: i) the MOC component enhances substrate (O ) and product (H O ) adsorption via host-guest interaction and hinders the rapid decomposition of H O on MOC-AuNP/g-C N , ii) the AuNP component affords a strong interfacial electric field that significantly promotes the migration of electrons from g-C N for O reduction reaction (ORR), iii) holes are used for H O oxidation reaction (WOR) to produce O and H to further promote ORR. Thus, MOC-AuNP/g-C N can be used as an efficient piezocatalyst to generate H O at rates up to 120.21 μmol g h in air and pure water without using sacrificial agents. This work proposes a new strategy for efficient piezocatalytic H O synthesis by constructing multiple active sites in semiconductor catalysts via hydrogen bonding, by enhancing substrate adsorption, rapid separation of electron-hole pairs and preventing rapid decomposition of H O .
压电催化过氧化氢(H₂O₂)生成是一种绿色合成方法,但压电催化剂中电荷载流子的快速复合以及底物吸附的困难限制了其性能。在此,金属有机笼包覆的金纳米粒子通过氢键锚定在石墨相氮化碳(MOC-AuNP/g-C₃N₄)上,作为高效生成H₂O₂的多功能位点。实验和理论计算证明,MOC-AuNP/g-C₃N₄同时优化了压电催化H₂O₂生成的三个关键部分:i)MOC组分通过主客体相互作用增强底物(O₂)和产物(H₂O₂)的吸附,并阻碍H₂O₂在MOC-AuNP/g-C₃N₄上的快速分解;ii)AuNP组分提供强界面电场,显著促进电子从g-C₃N₄迁移用于氧还原反应(ORR);iii)空穴用于H₂O₂氧化反应(WOR)生成O₂和H⁺以进一步促进ORR。因此,MOC-AuNP/g-C₃N₄可作为一种高效的压电催化剂,在不使用牺牲剂的情况下,在空气和纯水中以高达120.21 μmol g⁻¹ h⁻¹的速率生成H₂O₂。这项工作通过氢键在半导体催化剂中构建多个活性位点,增强底物吸附、快速分离电子-空穴对并防止H₂O₂快速分解,提出了一种高效压电催化H₂O₂合成的新策略。