Chen Bochao, Qi Zijia, Chen Biao, Liu Xin, Li Huan, Han Xiaopeng, Zhou Guangmin, Hu Wenbin, Zhao Naiqin, He Chunnian
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China.
National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China.
Angew Chem Int Ed Engl. 2024 Jan 2;63(1):e202316116. doi: 10.1002/anie.202316116. Epub 2023 Nov 30.
The water-soluble salt-template technique holds great promise for fabricating 3D porous materials. However, an equipment-free and pore-size controllable synthetic approach employing salt-template precursors at room temperature has remained unexplored. Herein, we introduce a green room-temperature antisolvent precipitation strategy for creating salt-template self-assembly precursors to universally produce 3D porous materials with controllable pore size. Through a combination of theoretical simulations and advanced characterization techniques, we unveil the antisolvent precipitation mechanism and provide guidelines for selecting raw materials and controlling the size of precipitated salt. Following the calcination and washing steps, we achieve large-scale and universal production of 3D porous materials and the recycling of the salt templates and antisolvents. The optimized nitrogen-doped 3D porous carbon (N-3DPC) materials demonstrate distinctive structural benefits, facilitating a high capacity for potassium-ion storage along with exceptional reversibility. This is further supported by in situ electrochemical impedance spectra, in situ Raman spectroscopy, and theoretical calculations. The anode shows a high rate capacity of 181 mAh g at 4 A g in the full cell. This study addresses the knowledge gap concerning the room-temperature synthesis of salt-template self-assembly precursors for the large-scale production of porous materials, thereby expanding their potential applications for electrochemical energy conversion and storage.
水溶性盐模板技术在制备三维多孔材料方面具有巨大潜力。然而,一种在室温下使用盐模板前驱体且无需设备且孔径可控的合成方法尚未得到探索。在此,我们引入一种绿色室温反溶剂沉淀策略,用于制备盐模板自组装前驱体,以普遍制备孔径可控的三维多孔材料。通过理论模拟和先进表征技术相结合,我们揭示了反溶剂沉淀机制,并为选择原材料和控制沉淀盐的尺寸提供了指导。经过煅烧和洗涤步骤,我们实现了三维多孔材料的大规模通用生产以及盐模板和反溶剂的循环利用。优化后的氮掺杂三维多孔碳(N-3DPC)材料展现出独特的结构优势,有利于实现高钾离子存储容量以及出色的可逆性。原位电化学阻抗谱、原位拉曼光谱和理论计算进一步证实了这一点。在全电池中,该阳极在4 A g下表现出181 mAh g的高倍率容量。本研究填补了关于盐模板自组装前驱体室温合成用于大规模制备多孔材料的知识空白,从而拓展了其在电化学能量转换和存储方面的潜在应用。