Suppr超能文献

一种概率-确定性方法,用于评估城市污水排放的污水排放对感染风险的气候变化影响。

A probabilistic-deterministic approach for assessing climate change effects on infection risks downstream of sewage emissions from CSOs.

机构信息

Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Vienna, Austria.

Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Vienna, Austria; Leichtweiß Institute for Hydraulic Engineering and Water Resources, Department of Hydrology and River Basin Management, Technische Universität Braunschweig, Brunswick, Germany.

出版信息

Water Res. 2023 Dec 1;247:120746. doi: 10.1016/j.watres.2023.120746. Epub 2023 Oct 17.

Abstract

The discharge of pathogens into urban recreational water bodies during combined sewer overflows (CSOs) pose a potential threat for public health which may increase in the future due to climate change. Improved methods are needed for predicting the impact of these effects on the microbiological urban river water quality and infection risks during recreational use. The aim of this study was to develop a novel probabilistic-deterministic modelling approach for this purpose building on physically plausible generated future rainfall time series. The approach consists of disaggregation and validation of daily precipitation time series from 21 regional climate models for a reference period (1971-2000, C20), a near-term future period (2021-2050, NTF) and a long-term future period (2071-2100, LTF) into sub-daily scale, and predicting the concentrations of enterococci and Giardia and Cryptosporidium, and infection risks during recreational use in the river downstream of the sewage emissions from CSOs. The approach was tested for an urban river catchment in Austria which is used for recreational activities (i.e. swimming, playing, wading, hand-to-mouth contact). According to a worst-case scenario (i.e. children bathing in the river), the 95th percentile infection risks for Giardia and Cryptosporidium range from 0.08 % in winter to 8 % per person and exposure event in summer for C20. The infection risk increase in the future is up to 0.8 log for individual scenarios. The results imply that measures to prevent CSOs may be needed to ensure sustainable water safety. The approach is promising for predicting the effect of climate change on urban water safety requirements and for supporting the selection of sustainable mitigation measures. Future studies should focus on reducing the uncertainty of the predictions at local scale.

摘要

病原体在合流污水溢流(CSO)期间排放到城市娱乐水中,对公共健康构成潜在威胁,而这种威胁由于气候变化可能会在未来增加。需要改进方法来预测这些影响对城市河流水质和娱乐用水期间感染风险的影响。本研究旨在为此目的开发一种新的概率-确定性建模方法,该方法基于物理上合理生成的未来降雨时间序列。该方法包括将 21 个区域气候模型的日降水时间序列从参考期(1971-2000 年,C20)、近期(2021-2050 年,NTF)和长期(2071-2100 年,LTF)分解和验证到亚日尺度,并预测肠球菌和贾第鞭毛虫和隐孢子虫的浓度,以及 CSO 污水排放下游河流中娱乐活动期间的感染风险。该方法针对奥地利的一条城市河流流域进行了测试,该流域用于娱乐活动(即游泳、玩耍、涉水、用手接触)。根据最坏情况(即儿童在河中洗澡),C20 时,贾第鞭毛虫和隐孢子虫的 95%感染风险在冬季为 0.08%,夏季每人每次暴露事件为 8%。未来的感染风险增加了 0.8 个对数。结果表明,可能需要采取措施防止 CSO,以确保水安全的可持续性。该方法有望预测气候变化对城市水安全要求的影响,并支持可持续缓解措施的选择。未来的研究应侧重于降低局部尺度预测的不确定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验