Suppr超能文献

基因工程小鼠的基因分型方案。

Genotyping Protocols for Genetically Engineered Mice.

机构信息

National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.

National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.

出版信息

Curr Protoc. 2023 Nov;3(11):e929. doi: 10.1002/cpz1.929.

Abstract

Historically, the laboratory mouse has been the mammalian species of choice for studying gene function and for modeling diseases in humans. This was mainly due to their availability from mouse fanciers. In addition, their short generation time, small size, and minimal food consumption compared to that of larger mammals were definite advantages. This led to the establishment of large hubs for the development of genetically modified mouse models, such as the Jackson Laboratory. Initial research into inbred mouse strains in the early 1900s revolved around coat color genetics and cancer studies, but gene targeting in embryonic stem cells and the introduction of transgenes through pronuclear injection of a mouse zygote, along with current clustered regularly interspaced short palindromic repeat (CRISPR) RNA gene editing, have allowed easy manipulation of the mouse genome. Originally, to distribute a mouse model to other facilities, standard methods had to be developed to ensure that each modified mouse trait could be consistently identified no matter which laboratory requested it. The task of establishing uniform protocols became easier with the development of the polymerase chain reaction (PCR). This chapter will provide guidelines for identifying genetically modified mouse models, mainly using endpoint PCR. In addition, we will discuss strategies to identify genetically modified mouse models that have been established using newer gene-editing technology such as CRISPR. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Digestion with proteinase K followed by purification of genomic DNA using phenol/chloroform Alternate Protocol: Digestion with proteinase K followed by crude isopropanol extraction of genomic DNA for tail biopsy and ear punch samples Basic Protocol 2: Purification of genomic DNA using a semi-automated system Basic Protocol 3: Purification of genomic DNA from semen, blood, or buccal swabs Basic Protocol 4: Purification of genomic DNA from mouse blastocysts to assess CRISPR gene editing Basic Protocol 5: Routine endpoint-PCR-based genotyping using DNA polymerase and thermal cycler Basic Protocol 6: T7E1/Surveyor assays to detect insertion or deletions following CRISPR editing Basic Protocol 7: Detecting off-target mutations following CRISPR editing Basic Protocol 8: Detecting genomic sequence deletion after CRISPR editing using a pair of guide RNAs Basic Protocol 9: Detecting gene knock-in events following CRISPR editing Basic Protocol 10: Screening of conditional knockout floxed mice.

摘要

从历史上看,实验室小鼠一直是研究基因功能和模拟人类疾病的首选哺乳动物物种。这主要是因为它们可以从鼠标爱好者那里获得。此外,与较大的哺乳动物相比,它们的世代时间短、体型小、食物消耗少是明显的优势。这导致了大型遗传修饰小鼠模型开发中心的建立,例如杰克逊实验室。20 世纪初,对近交系小鼠品系的初步研究主要围绕毛色遗传学和癌症研究,但胚胎干细胞中的基因靶向和通过小鼠受精卵原核注射引入转基因,以及当前的成簇规律间隔短回文重复 (CRISPR) RNA 基因编辑,使得对小鼠基因组的容易操作成为可能。最初,为了将小鼠模型分发给其他机构,必须开发标准方法来确保无论哪个实验室要求,每个修饰的小鼠特征都可以一致识别。随着聚合酶链反应 (PCR) 的发展,建立统一协议的任务变得更加容易。本章将提供鉴定遗传修饰小鼠模型的指南,主要使用终点 PCR。此外,我们将讨论使用 CRISPR 等较新技术建立的遗传修饰小鼠模型的鉴定策略。2023 年出版。本文是美国政府的工作,在美国属于公有领域。基本方案 1:使用蛋白酶 K 消化,然后使用苯酚/氯仿纯化基因组 DNA 替代方案 1:使用蛋白酶 K 消化,然后使用粗异丙醇提取基因组 DNA 进行尾巴活检和耳打孔样本基本方案 2:使用半自动系统纯化基因组 DNA 基本方案 3:从精液、血液或口腔拭子中纯化基因组 DNA 基本方案 4:从小鼠囊胚中纯化基因组 DNA 以评估 CRISPR 基因编辑 基本方案 5:使用 DNA 聚合酶和热循环仪进行常规终点-PCR 基因型分析 基本方案 6:T7E1/Surveyor 测定法检测 CRISPR 编辑后的插入或缺失 基本方案 7:检测 CRISPR 编辑后的靶基因突变 基本方案 8:使用一对向导 RNA 检测 CRISPR 编辑后的基因组序列缺失 基本方案 9:检测 CRISPR 编辑后的基因敲入事件 基本方案 10:筛选条件性敲除 floxed 小鼠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea49/10754054/702ff7e468da/nihms-1938543-f0001.jpg

相似文献

8
Efficient mouse genome engineering by CRISPR-EZ technology.利用 CRISPR-EZ 技术实现高效的小鼠基因组工程。
Nat Protoc. 2018 Jun;13(6):1253-1274. doi: 10.1038/nprot.2018.012. Epub 2018 May 10.

本文引用的文献

3
The translatability of pain across species.疼痛在物种间的可译性。
Philos Trans R Soc Lond B Biol Sci. 2019 Nov 11;374(1785):20190286. doi: 10.1098/rstb.2019.0286. Epub 2019 Sep 23.
6
Polymerase Chain Reaction.聚合酶链反应
Cold Spring Harb Protoc. 2019 Jun 3;2019(6):2019/6/pdb.top095109. doi: 10.1101/pdb.top095109.
7
Genome Editing in Mice Using CRISPR/Cas9 Technology.利用CRISPR/Cas9技术对小鼠进行基因组编辑
Curr Protoc Cell Biol. 2018 Dec;81(1):e57. doi: 10.1002/cpcb.57. Epub 2018 Sep 4.
9
10
Touchdown Polymerase Chain Reaction (PCR).降落聚合酶链反应(PCR)。
Cold Spring Harb Protoc. 2018 May 1;2018(5):2018/5/pdb.prot095133. doi: 10.1101/pdb.prot095133.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验