Suppr超能文献

分层修饰的磁性纳米颗粒增强了氧化应激,促进了化学动力学/磁热疗/免疫治疗。

Hierarchically decorated magnetic nanoparticles amplify the oxidative stress and promote the chemodynamic/magnetic hyperthermia/immune therapy.

机构信息

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China.

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China; Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.

出版信息

Acta Biomater. 2024 Jan 1;173:457-469. doi: 10.1016/j.actbio.2023.11.023. Epub 2023 Nov 19.

Abstract

Magnetic nanoparticles (MNPs) are promising in tumor treatments due to their capacity for magnetic hyperthermia therapy (MHT), chemodynamic therapy (CDT), and immuno-related therapies, but still suffer from unsatisfactory tumor inhibition in the clinic. Insufficient hydrogen peroxide supply, glutathione-induced resistance, and high-density extracellular matrix (ECM) are the barriers. Herein, we hierarchically decorated MNPs with disulfide bonds (S-S), dendritic L-arginine (R), and glucose oxidase (GOx) to form a nanosystem (MNPs-SS-R-GOx). Its outer GOx layer not only enhanced the HO supply to produce OH by Fenton reaction, but also generated stronger oxidants (ONOO) together with the interfaced R layer. The inner S-S layer consumed glutathione to interdict its reaction with oxidants, thus enhancing CDT effects. Importantly, the generated ONOO tripled the MMP-9 expression to induce ECM degradation, enabling much deeper penetration of MNPs and benefiting CDT, MHT, and immunotherapy. Finally, the MNPs-SS-R-GOx demonstrated a remarkable 91.7% tumor inhibition in vivo. STATEMENT OF SIGNIFICANCE: Magnetic nanoparticles (MNPs) are a promising tumor therapeutic agent but with limited effectiveness. Our hierarchical MNP design features disulfide bonds (S-S), dendritic L-arginine (R), and glucose oxidase (GOx), which boosts HO supply for ·OH generation in Fenton reactions, produces potent ONOO, and enhances chemodynamic therapy via glutathione consumption. Moreover, the ONOO facilitates the upregulation of matrix metalloprotein expression beneficial for extracellular matrix degradation, which in turn enhances the penetration of MNPs and benefits the antitumor CDT/MHT/immuno-related therapy. In vivo experiments have demonstrated an impressive 91.7% inhibition of tumor growth. This hierarchical design offers groundbreaking insights for further advancements in MNP-based tumor therapy. Its implications extend to a broader audience, encompassing those interested in material science, biology, oncology, and beyond.

摘要

磁性纳米粒子(MNPs)由于其在磁热疗(MHT)、化学动力学治疗(CDT)和免疫相关治疗中的应用潜力,在肿瘤治疗中具有广阔的前景,但在临床上仍存在肿瘤抑制效果不理想的问题。过氧化氢供应不足、谷胱甘肽诱导的耐药性和高密度细胞外基质(ECM)是主要的障碍。在此,我们通过二硫键(S-S)、树枝状 L-精氨酸(R)和葡萄糖氧化酶(GOx)对 MNPs 进行分级修饰,形成纳米系统(MNPs-SS-R-GOx)。其外层的 GOx 层不仅通过芬顿反应增强了 HO 的供应以产生 OH,还与界面 R 层一起生成了更强的氧化剂(ONOO)。内层的 S-S 层消耗了谷胱甘肽,从而阻止了它与氧化剂的反应,增强了 CDT 效应。重要的是,生成的 ONOO 将 MMP-9 的表达增加了两倍,从而诱导 ECM 降解,使 MNPs 能够更深地渗透,并有利于 CDT、MHT 和免疫治疗。最后,MNPs-SS-R-GOx 在体内表现出了显著的 91.7%的肿瘤抑制效果。

意义声明

磁性纳米粒子(MNPs)是一种很有前途的肿瘤治疗剂,但效果有限。我们的分级 MNP 设计具有二硫键(S-S)、树枝状 L-精氨酸(R)和葡萄糖氧化酶(GOx),可增强芬顿反应中 HO 的供应以产生·OH,产生有效的 ONOO,并通过谷胱甘肽消耗增强化学动力学治疗。此外,ONOO 促进了基质金属蛋白酶表达的上调,有利于细胞外基质的降解,从而增强了 MNPs 的渗透,并有利于抗肿瘤 CDT/MHT/免疫相关治疗。体内实验证明了对肿瘤生长的抑制作用达到了 91.7%。这种分级设计为基于 MNPs 的肿瘤治疗的进一步发展提供了开创性的见解。其意义不仅限于材料科学、生物学、肿瘤学等领域的专业人士,还涵盖了更广泛的受众。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验