Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.
Chemical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.
ACS Appl Bio Mater. 2023 Sep 18;6(9):3683-3695. doi: 10.1021/acsabm.3c00337. Epub 2023 Aug 16.
Granular hydrogels have recently emerged as promising biomaterials for tissue engineering and 3D-printing applications, addressing the limitations of bulk hydrogels while exhibiting desirable properties such as injectability and high porosity. However, their structural stability can be improved with post-injection interparticle cross-linking. In this study, we developed granular hydrogels with interparticle cross-linking through reversible and dynamic covalent bonds. We fragmented photo-cross-linked bulk hydrogels to produce aldehyde or hydrazide-functionalized microgels using chondroitin sulfate. Mixing these microgels facilitated interparticle cross-linking through reversible hydrazone bonds, providing shear-thinning and self-healing properties for injectability and 3D printing. The resulting granular hydrogels displayed high mechanical stability without the need for secondary cross-linking. Furthermore, the porosity and sustained release of growth factors from these hydrogels synergistically enhanced cell recruitment. Our study highlights the potential of reversible interparticle cross-linking for designing injectable and 3D printable therapeutic delivery scaffolds using granular hydrogels. Overall, our study highlights the potential of reversible interparticle cross-linking to improve the structural stability of granular hydrogels, making them an effective biomaterial for use in tissue engineering and 3D-printing applications.
颗粒状水凝胶最近作为组织工程和 3D 打印应用的有前途的生物材料出现,解决了块状水凝胶的局限性,同时表现出可注射性和高孔隙率等理想特性。然而,它们的结构稳定性可以通过注射后颗粒间交联来提高。在这项研究中,我们通过可逆和动态共价键开发了具有颗粒间交联的颗粒状水凝胶。我们使用硫酸软骨素将光交联的块状水凝胶破碎成醛基或酰肼基功能化的微凝胶。混合这些微凝胶通过可逆腙键促进颗粒间交联,为可注射性和 3D 打印提供剪切稀化和自修复性能。所得颗粒状水凝胶具有高机械稳定性,无需二次交联。此外,这些水凝胶的孔隙率和生长因子的持续释放协同增强了细胞募集。我们的研究强调了可逆颗粒间交联在设计使用颗粒状水凝胶的可注射和可 3D 打印治疗性输送支架方面的潜力。总的来说,我们的研究强调了可逆颗粒间交联在提高颗粒状水凝胶结构稳定性方面的潜力,使它们成为组织工程和 3D 打印应用的有效生物材料。