文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

功能纳米药物调控细胞死亡通路以增强抗肿瘤免疫

Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity.

机构信息

School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, Henan, 450001, China.

Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450001, China.

出版信息

Adv Sci (Weinh). 2024 Jan;11(3):e2306580. doi: 10.1002/advs.202306580. Epub 2023 Nov 20.


DOI:10.1002/advs.202306580
PMID:37984863
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10797449/
Abstract

Cancer immunotherapy has become a mainstream cancer treatment over traditional therapeutic modes. Cancer cells can undergo programmed cell death including ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis which are find to have intrinsic relationships with host antitumor immune response. However, direct use of cell death inducers or regulators may bring about severe side effects that can also be rapidly excreted and degraded with low therapeutic efficacy. Nanomaterials are able to carry them for long circulation time, high tumor accumulation and controlled release to achieve satisfactory therapeutic effect. Nowadays, a large number of studies have focused on nanomedicines-based strategies through modulating cell death modalities to potentiate antitumor immunity. Herein, immune cell types and their function are first summarized, and state-of-the-art research progresses in nanomedicines mediated cell death pathways (e.g., ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis) with immune response provocation are highlighted. Subsequently, the conclusion and outlook of potential research focus are discussed.

摘要

癌症免疫疗法已成为一种主流的癌症治疗方法,优于传统的治疗模式。癌细胞可以经历程序性细胞死亡,包括铁死亡、细胞焦亡、自噬、坏死性凋亡、细胞凋亡和铜死亡,这些发现与宿主抗肿瘤免疫反应有内在关系。然而,直接使用细胞死亡诱导剂或调节剂可能会带来严重的副作用,而且它们的治疗效果也很低,还可能会迅速被排泄和降解。纳米材料能够延长它们的循环时间、提高肿瘤积累和控制释放,以达到令人满意的治疗效果。如今,大量的研究集中在基于纳米医学的策略上,通过调节细胞死亡方式来增强抗肿瘤免疫。在此,首先总结了免疫细胞类型及其功能,并强调了纳米医学介导的细胞死亡途径(如铁死亡、细胞焦亡、自噬、坏死性凋亡、细胞凋亡和铜死亡)与免疫反应激发的最新研究进展。随后,讨论了潜在研究重点的结论和展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/6e1e167ff43b/ADVS-11-2306580-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/47eb40285144/ADVS-11-2306580-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/f36b4191f175/ADVS-11-2306580-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/abf4f4a05045/ADVS-11-2306580-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/1ce8ad05055b/ADVS-11-2306580-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/70bd89bcc842/ADVS-11-2306580-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/b510a127d240/ADVS-11-2306580-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/46f00cd72c75/ADVS-11-2306580-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/17ebad98d943/ADVS-11-2306580-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/04a7e171897d/ADVS-11-2306580-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/665df7d3f50b/ADVS-11-2306580-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/4488d0d2d1e4/ADVS-11-2306580-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/6e1e167ff43b/ADVS-11-2306580-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/47eb40285144/ADVS-11-2306580-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/f36b4191f175/ADVS-11-2306580-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/abf4f4a05045/ADVS-11-2306580-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/1ce8ad05055b/ADVS-11-2306580-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/70bd89bcc842/ADVS-11-2306580-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/b510a127d240/ADVS-11-2306580-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/46f00cd72c75/ADVS-11-2306580-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/17ebad98d943/ADVS-11-2306580-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/04a7e171897d/ADVS-11-2306580-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/665df7d3f50b/ADVS-11-2306580-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/4488d0d2d1e4/ADVS-11-2306580-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5a5/10797449/6e1e167ff43b/ADVS-11-2306580-g012.jpg

相似文献

[1]
Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity.

Adv Sci (Weinh). 2024-1

[2]
Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research.

J Hematol Oncol. 2022-12-8

[3]
Selected Flavonols Targeting Cell Death Pathways in Cancer Therapy: The Latest Achievements in Research on Apoptosis, Autophagy, Necroptosis, Pyroptosis, Ferroptosis, and Cuproptosis.

Nutrients. 2024-4-18

[4]
Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy.

Signal Transduct Target Ther. 2022-6-20

[5]
Ferroptosis, necroptosis, and pyroptosis in anticancer immunity.

J Hematol Oncol. 2020-8-10

[6]
The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy.

J Nanobiotechnology. 2024-3-7

[7]
Programmed Cell Death Tunes Tumor Immunity.

Front Immunol. 2022

[8]
Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment.

Theranostics. 2021

[9]
Non-apoptotic cell death-based cancer therapy: Molecular mechanism, pharmacological modulators, and nanomedicine.

Acta Pharm Sin B. 2022-9

[10]
Nanomedicine-mediated regulated cell death in cancer immunotherapy.

J Control Release. 2023-12

引用本文的文献

[1]
Nanomedicine-induced pyroptosis for anti-tumor immunotherapy: Mechanism analysis and application prospects.

Acta Pharm Sin B. 2025-7

[2]
From mechanism to application: programmed cell death pathways in nanomedicine-driven cancer therapies.

Bioact Mater. 2025-7-1

[3]
Nanobubble-mediated sonodynamic therapy enhances cuproptosis in the treatment of hepatocellular carcinoma.

Nanoscale Adv. 2025-6-12

[4]
Tumor-targeting nanomaterials based on metal-organic frameworks mediate tumor immunotherapy by promoting cuproptosis and pyroptosis in hepatocellular carcinoma cells.

Mater Today Bio. 2025-4-8

[5]
IR783-Stabilized Nanodrugs Enhance Anticancer Immune Response by Synergizing Oxidation Therapy and Epigenetic Modulation.

Adv Sci (Weinh). 2025-6

[6]
Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment.

Mol Cancer. 2025-3-3

[7]
Ferroptosis in Pulmonary Disease and Lung Cancer: Molecular Mechanisms, Crosstalk Regulation, and Therapeutic Strategies.

MedComm (2020). 2025-2-23

[8]
Emerging Role of Extracellular pH in Tumor Microenvironment as a Therapeutic Target for Cancer Immunotherapy.

Cells. 2024-11-20

[9]
Integrated analysis of single-cell, spatial and bulk RNA-sequencing identifies a cell-death signature for predicting the outcomes of head and neck cancer.

Front Immunol. 2024

[10]
Signaling Mechanism of Cuproptosis Activating cGAS-STING Immune Pathway.

JACS Au. 2024-9-20

本文引用的文献

[1]
Strategies for enhancing cancer chemodynamic therapy performance.

Exploration (Beijing). 2022-3-7

[2]
Rationally designed modular drug delivery platform based on intracellular peptide self-assembly.

Exploration (Beijing). 2021-10-30

[3]
Pyroptosis-Mediated Synergistic Photodynamic and Photothermal Immunotherapy Enabled by a Tumor-Membrane-Targeted Photosensitive Dimer.

Adv Mater. 2023-6

[4]
Cuproptosis Induced by ROS Responsive Nanoparticles with Elesclomol and Copper Combined with αPD-L1 for Enhanced Cancer Immunotherapy.

Adv Mater. 2023-6

[5]
Oxygen Self-Generating Nanoreactor Mediated Ferroptosis Activation and Immunotherapy in Triple-Negative Breast Cancer.

ACS Nano. 2023-3-14

[6]
Macrophage-evading and tumor-specific apoptosis inducing nanoparticles for targeted cancer therapy.

Acta Pharm Sin B. 2023-1

[7]
A cooperative nano-CRISPR scaffold potentiates immunotherapy via activation of tumour-intrinsic pyroptosis.

Nat Commun. 2023-2-11

[8]
Cuproptosis: p53-regulated metabolic cell death?

Cell Death Differ. 2023-4

[9]
Efficient Delivery of GSDMD-N mRNA by Engineered Extracellular Vesicles Induces Pyroptosis for Enhanced Immunotherapy.

Small. 2023-5

[10]
ZIF-8 Nanoparticles Evoke Pyroptosis for High-Efficiency Cancer Immunotherapy.

Angew Chem Int Ed Engl. 2023-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索