用于长期生物电位监测和人机接口的剪纸结构、低阻抗、皮肤顺应性电子设备。

Kirigami-Structured, Low-Impedance, and Skin-Conformal Electronics for Long-Term Biopotential Monitoring and Human-Machine Interfaces.

机构信息

School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.

School of Information Science and Engineering, University of Jinan, Jinan, 250022, China.

出版信息

Adv Sci (Weinh). 2024 Jan;11(1):e2304871. doi: 10.1002/advs.202304871. Epub 2023 Nov 20.

Abstract

Epidermal dry electrodes with high skin-compliant stretchability, low bioelectric interfacial impedance, and long-term reliability are crucial for biopotential signal recording and human-machine interaction. However, incorporating these essential characteristics into dry electrodes remains a challenge. Here, a skin-conformal dry electrode is developed by encapsulating kirigami-structured poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/polyvinyl alcohol (PVA)/silver nanowires (Ag NWs) film with ultrathin polyurethane (PU) tape. This Kirigami-structured PEDOT:PSS/PVA/Ag NWs/PU epidermal electrode exhibits a low sheet resistance (≈3.9 Ω sq ), large skin-compliant stretchability (>100%), low interfacial impedance (≈27.41 kΩ at 100 Hz and ≈59.76 kΩ at 10 Hz), and sufficient mechanoelectrical stability. This enhanced performance is attributed to the synergistic effects of ionic/electronic current from PEDOT:PSS/Ag NWs dual conductive network, Kirigami structure, and unique encapsulation. Compared with the existing dry electrodes or standard gel electrodes, the as-prepared electrodes possess lower interfacial impedance and noise in various conditions (e.g., sweat, wet, and movement), indicating superior water/motion-interference resistance. Moreover, they can acquire high-quality biopotential signals even after water rinsing and ultrasonic cleaning. These outstanding advantages enable the Kirigami-structured PEDOT:PSS/PVA/Ag NWs/PU electrodes to effectively monitor human motions in real-time and record epidermal biopotential signals, such as electrocardiogram, electromyogram, and electrooculogram under various conditions, and control external electronics, thereby facilitating human-machine interactions.

摘要

具有高皮肤顺应性拉伸性、低生物电界面阻抗和长期可靠性的表皮干电极对于生物电势信号记录和人机交互至关重要。然而,将这些基本特性纳入干电极仍然是一个挑战。在这里,通过将具有折纸结构的聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)/聚乙烯醇(PVA)/银纳米线(Ag NWs)薄膜封装在超薄的聚氨酯(PU)带中,开发出一种皮肤顺应性干电极。这种具有折纸结构的 PEDOT:PSS/PVA/Ag NWs/PU 表皮电极表现出低的片电阻(≈3.9 Ω sq)、大的皮肤顺应性拉伸性(>100%)、低的界面阻抗(≈100 Hz 时为 27.41 kΩ,≈10 Hz 时为 59.76 kΩ)和足够的机电稳定性。这种增强的性能归因于 PEDOT:PSS/Ag NWs 双导电网络、折纸结构和独特封装的协同效应。与现有的干电极或标准凝胶电极相比,所制备的电极在各种条件下(例如,汗水、潮湿和运动)具有更低的界面阻抗和噪声,表明具有更好的水/运动干扰阻力。此外,即使在水冲洗和超声清洗后,它们也可以获得高质量的生物电势信号。这些卓越的优势使具有折纸结构的 PEDOT:PSS/PVA/Ag NWs/PU 电极能够有效地实时监测人体运动,并记录各种条件下的表皮生物电势信号,如心电图、肌电图和眼电图,以及控制外部电子设备,从而促进人机交互。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f71/10767437/948b1fa84d3d/ADVS-11-2304871-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索