Scholten Kee, Xu Huijing, Lu Zhouxiao, Jiang Wenxuan, Ortigoza-Diaz Jessica, Petrossians Artin, Orler Steven, Gallonio Rachael, Liu Xin, Song Dong, Meng Ellis
Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, USA.
Neuroscience Graduate Program, University of Southern California, Los Angeles, USA.
bioRxiv. 2023 Nov 6:2023.11.05.565048. doi: 10.1101/2023.11.05.565048.
Large scale monitoring of neural activity at the single unit level can be achieved via electrophysiological recording using implanted microelectrodes. While neuroscience researchers have widely employed chronically implanted electrode-based interfaces for this purpose, a commonly encountered limitation is loss of highly resolved signals arising from immunological response over time. Next generation electrode-based interfaces improve longitudinal signal quality using the strategy of stabilizing the device-tissue interface with microelectrode arrays constructed from soft and flexible polymer materials. The limited availability of such polymer microelectrode arrays has restricted access to a small number of researchers able to build their own custom devices or who have developed specific collaborations with engineering researchers who can produce them. Here, a new technology resource model is introduced that seeks to widely increase access to polymer microelectrode arrays by the neuroscience research community. The Polymer Implantable Electrode (PIE) Foundry provides custom and standardized polymer microelectrode arrays as well as training and guidance on best-practices for implantation and chronic experiments.
通过使用植入式微电极进行电生理记录,可以在单个单元水平上对神经活动进行大规模监测。虽然神经科学研究人员为此目的广泛采用了长期植入的基于电极的接口,但一个常见的局限性是随着时间的推移,免疫反应会导致高分辨率信号丢失。下一代基于电极的接口采用由柔软灵活的聚合物材料构建的微电极阵列来稳定设备与组织的接口,从而提高纵向信号质量。此类聚合物微电极阵列的供应有限,这限制了只有少数能够自行构建定制设备的研究人员或与能够生产它们的工程研究人员开展特定合作的研究人员才能使用。在此,引入了一种新的技术资源模型,旨在广泛增加神经科学研究界对聚合物微电极阵列的获取。聚合物植入式电极(PIE)铸造厂提供定制和标准化的聚合物微电极阵列,以及关于植入和长期实验最佳实践的培训和指导。