School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden.
Adv Healthc Mater. 2024 Apr;13(10):e2303481. doi: 10.1002/adhm.202303481. Epub 2023 Nov 29.
Epithelial-to-mesenchymal transition (EMT) plays a crucial role in metastatic cancer progression, and current research, which relies heavily on 2D monolayer cultures, falls short in recapitulating the complexity of a 3D tumor microenvironment. To address this limitation, a transcriptomic meta-analysis is conducted on diverse cancer types undergoing EMT in 2D and 3D cultures. It is found that mechanotransduction is elevated in 3D cultures and is further intensified during EMT, but not during 2D EMT. This analysis reveals a distinct 3D EMT gene signature, characterized by extracellular matrix remodeling coordinated by angiopoietin-like 4 (Angptl4) along with other canonical EMT regulators. Utilizing hydrogel-based 3D matrices with adjustable mechanical forces, 3D cancer cultures are established at varying physiological stiffness levels. A YAP:EGR-1 mediated up-regulation of Angptl4 expression is observed, accompanied by an upregulation of mesenchymal markers, at higher stiffness during cancer EMT. Suppression of Angptl4 using antisense oligonucleotides or anti-cAngptl4 antibodies leads to a dose-dependent abolishment of EMT-mediated chemoresistance and tumor self-organization in 3D, ultimately resulting in diminished metastatic potential and stunted growth of tumor xenografts. This unique programmable 3D cancer cultures simulate stiffness levels in the tumor microenvironment and unveil Angptl4 as a promising therapeutic target to inhibit EMT and impede cancer progression.
上皮-间充质转化 (EMT) 在转移性癌症进展中起着至关重要的作用,目前的研究主要依赖于 2D 单层培养,无法重现 3D 肿瘤微环境的复杂性。为了解决这一局限性,对在 2D 和 3D 培养中经历 EMT 的多种癌症类型进行了转录组元分析。研究发现,在 3D 培养中机械转导被上调,并且在 EMT 过程中进一步加强,但在 2D EMT 过程中没有加强。该分析揭示了一个独特的 3D EMT 基因特征,其特征是由血管生成素样 4 (Angptl4) 协调的细胞外基质重塑,以及其他经典的 EMT 调节剂。利用具有可调节机械力的水凝胶 3D 基质,在不同的生理刚度水平下建立 3D 癌症培养物。在更高的刚度下观察到 YAP:EGR-1 介导的 Angptl4 表达上调,伴随着间充质标志物的上调,在癌症 EMT 过程中。使用反义寡核苷酸或抗 cAngptl4 抗体抑制 Angptl4 会导致 EMT 介导的化学抗性和 3D 肿瘤自组织的剂量依赖性消除,最终导致转移潜力降低和肿瘤异种移植物生长受阻。这种独特的可编程 3D 癌症培养物模拟了肿瘤微环境中的刚度水平,并揭示了 Angptl4 作为抑制 EMT 和阻碍癌症进展的有前途的治疗靶点。