Suppr超能文献

基于深度学习的乳腺 X 线摄影乳腺癌筛查分类:一项英国回顾性研究。

Mammography Breast Cancer Screening Triage Using Deep Learning: A UK Retrospective Study.

机构信息

From the Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Level 5, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK (S.E.H., N.R.P., Y.H., A.N.P., M.N., F.J.G.); University of Cambridge School of Clinical Medicine, Cambridge, UK (M.I.A, A.S.); Department of Radiology, Barts Health NHS Trust, The Royal London Hospital, London, UK (S.E.H.); Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK (R.T.B., A.N.P., F.J.G.); EPSRC Cambridge Mathematics of Information in Healthcare Hub, University of Cambridge, Cambridge, UK (Y.H.); Peel & Schriek Consulting, London, UK (S.H.); Department of Radiology, Norfolk and Norwich University Hospital, Norwich, UK (B.K., A.J.); and University of East Anglia, Norwich Research Park, Norwich, UK (B.K.).

出版信息

Radiology. 2023 Nov;309(2):e231173. doi: 10.1148/radiol.231173.

Abstract

Background Breast screening enables early detection of cancers; however, most women have normal mammograms, resulting in repetitive and resource-intensive reading tasks. Purpose To investigate if deep learning (DL) algorithms can be used to triage mammograms by identifying normal results to reduce workload or flag cancers that may be overlooked. Materials and Methods In this retrospective study, three commercial DL algorithms were investigated using consecutive mammograms from two UK Breast Screening Program sites from January 2015 to December 2017 and January 2017 to December 2018 on devices from two mammography vendors. Normal mammograms with a 3-year follow-up and histopathologically proven cancer detected at screening, the subsequent round, or in the 3-year interval were included. Two algorithm thresholds were set: in scenario A, 99.0% sensitivity for rule-out triage to a lone reader, and in scenario B, approximately 1.0% additional recall providing a rule-in triage for further assessment. Both thresholds were then applied to the screening workflow in scenario C. The sensitivity and specificity were used to assess the overall predictive performance of each DL algorithm. Results The data set comprised 78 849 patients (median age, 59 years [IQR, 53-63 years]) and 887 screening-detected, 439 interval, and 688 subsequent screening round-detected cancers. In scenario A (rule-out triage), models DL-1, DL-2, and DL-3 triaged 35.0% (27 565 of 78 849), 53.2% (41 937 of 78 849), and 55.6% (43 869 of 78 849) of mammograms, respectively, with 0.0% (0 of 887) to 0.1% (one of 887) of screening-detected cancers undetected. In scenario B, DL algorithms triaged in 4.6% (20 of 439) to 8.2% (36 of 439) of interval and 5.2% (36 of 688) to 6.1% (42 of 688) of subsequent-round cancers when applied after the routine double-reading workflow. Combining both approaches in scenario C resulted in an overall noninferior specificity (difference, -0.9%; < .001) and superior sensitivity (difference, 2.7%; < .001) for the adaptive workflow compared with routine double reading for all three algorithms. Conclusion Rule-out and rule-in DL-adapted triage workflows can improve the efficiency and efficacy of mammography breast cancer screening. © RSNA, 2023 See also the editorial by Nishikawa and Lu in this issue.

摘要

背景 乳腺筛查可实现癌症的早期检测;然而,大多数女性的乳腺 X 光检查结果正常,导致重复性和资源密集型阅读任务增加。目的 研究深度学习(DL)算法是否可用于通过识别正常结果来对乳腺 X 光片进行分类,以减少工作量或标记可能被忽视的癌症。材料与方法 本回顾性研究使用了来自英国乳腺筛查计划两个站点的连续乳腺 X 光片,这些 X 光片拍摄于 2015 年 1 月至 2017 年 12 月和 2017 年 1 月至 2018 年 12 月,使用了来自两个乳腺 X 光片供应商的设备。纳入了具有 3 年随访且经病理证实的在筛查、后续轮次或 3 年间隔期间发现的正常乳腺 X 光片和癌症。设置了两个算法阈值:在方案 A 中,对于单独读片的排除性分类,灵敏度为 99.0%;在方案 B 中,大约 1.0%的额外召回率提供了进一步评估的分类性分类。在方案 C 中,将这两个阈值应用于筛查工作流程。使用敏感性和特异性来评估每个 DL 算法的整体预测性能。结果 数据集包括 78849 例患者(中位年龄,59 岁[四分位数范围,53-63 岁])和 887 例筛查检出、439 例间隔检出和 688 例后续筛查轮次检出的癌症。在方案 A(排除性分类)中,模型 DL-1、DL-2 和 DL-3 分别对 78849 例乳腺 X 光片中的 35.0%(27565 例)、53.2%(41937 例)和 55.6%(43869 例)进行了分类,而对 0.0%(0/887)至 0.1%(1/887)的筛查检出癌症漏诊。在方案 B 中,当将 DL 算法应用于常规双读工作流程之后,在间隔期的 4.6%(20/439)至 8.2%(36/439)和后续轮次的 5.2%(36/688)至 6.1%(42/688)的癌症中进行分类。在方案 C 中,与常规双读相比,所有三种算法的自适应工作流程的非劣特异性(差异,-0.9%;<.001)和敏感性(差异,2.7%;<.001)均得到改善。结论 排除性和分类性的 DL 自适应分类工作流程可以提高乳腺 X 光筛查的效率和效果。 © RSNA,2023 也可参见本期 Nishikawa 和 Lu 的社论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验