Suppr超能文献

深度学习模型在乳房 X 光筛查中的分诊作用:一项模拟研究。

A Deep Learning Model to Triage Screening Mammograms: A Simulation Study.

机构信息

From the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Mass (A.Y., T.S., R.B.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, WAC 240, Boston, Mass 02114-2698 (R.M., C.L.).

出版信息

Radiology. 2019 Oct;293(1):38-46. doi: 10.1148/radiol.2019182908. Epub 2019 Aug 6.

Abstract

Background Recent deep learning (DL) approaches have shown promise in improving sensitivity but have not addressed limitations in radiologist specificity or efficiency. Purpose To develop a DL model to triage a portion of mammograms as cancer free, improving performance and workflow efficiency. Materials and Methods In this retrospective study, 223 109 consecutive screening mammograms performed in 66 661 women from January 2009 to December 2016 were collected with cancer outcomes obtained through linkage to a regional tumor registry. This cohort was split by patient into 212 272, 25 999, and 26 540 mammograms from 56 831, 7021, and 7176 patients for training, validation, and testing, respectively. A DL model was developed to triage mammograms as cancer free and evaluated on the test set. A DL-triage workflow was simulated in which radiologists skipped mammograms triaged as cancer free (interpreting them as negative for cancer) and read mammograms not triaged as cancer free by using the original interpreting radiologists' assessments. Sensitivities, specificities, and percentage of mammograms read were calculated, with and without the DL-triage-simulated workflow. Statistics were computed across 5000 bootstrap samples to assess confidence intervals (CIs). Specificities were compared by using a two-tailed test ( < .05) and sensitivities were compared by using a one-sided test with a noninferiority margin of 5% ( < .05). Results The test set included 7176 women (mean age, 57.8 years ± 10.9 [standard deviation]). When reading all mammograms, radiologists obtained a sensitivity and specificity of 90.6% (173 of 191; 95% CI: 86.6%, 94.7%) and 93.5% (24 625 of 26 349; 95% CI: 93.3%, 93.9%). In the DL-simulated workflow, the radiologists obtained a sensitivity and specificity of 90.1% (172 of 191; 95% CI: 86.0%, 94.3%) and 94.2% (24 814 of 26 349; 95% CI: 94.0%, 94.6%) while reading 80.7% (21 420 of 26 540) of the mammograms. The simulated workflow improved specificity ( = .002) and obtained a noninferior sensitivity with a margin of 5% ( < .001). Conclusion This deep learning model has the potential to reduce radiologist workload and significantly improve specificity without harming sensitivity. © RSNA, 2019 See also the editorial by Kontos and Conant in this issue.

摘要

背景 最近的深度学习(DL)方法在提高敏感性方面显示出了希望,但尚未解决放射科医生特异性或效率方面的局限性。目的 开发一种 DL 模型来对一部分乳房 X 光照片进行分类,认为其无癌症,从而提高性能和工作流程效率。材料与方法 在这项回顾性研究中,收集了 2009 年 1 月至 2016 年 12 月期间在 66661 名女性中进行的 223109 例连续筛查性乳房 X 光片,通过与区域肿瘤登记处的链接获得癌症结果。该队列按患者分为 212272、25999 和 26540 个乳房 X 光片,来自 56831、7021 和 7176 名患者,分别用于训练、验证和测试。开发了一种 DL 模型来对乳房 X 光片进行分类,并在测试集上进行评估。模拟了一种 DL 分诊工作流程,在此流程中,放射科医生跳过分类为无癌症的乳房 X 光片(将其解释为无癌症),并使用原始解释放射科医生的评估来读取未分类为无癌症的乳房 X 光片。计算了有无 DL 分诊模拟工作流程时的敏感性、特异性和阅读的乳房 X 光片百分比。通过使用双侧 t 检验(<.05)比较特异性,并使用单侧 t 检验(非劣效性边缘为 5%,<.05)比较敏感性。结果 测试集包括 7176 名女性(平均年龄为 57.8 岁±10.9[标准差])。当阅读所有乳房 X 光片时,放射科医生获得了 90.6%(173/191;95%CI:86.6%,94.7%)和 93.5%(24625/26349;95%CI:93.3%,93.9%)的敏感性和特异性。在 DL 模拟工作流程中,放射科医生获得了 90.1%(172/191;95%CI:86.0%,94.3%)和 94.2%(24814/26349;95%CI:94.0%,94.6%)的敏感性和特异性,同时阅读了 80.7%(21420/26540)的乳房 X 光片。模拟工作流程提高了特异性(=.002),并获得了具有 5%非劣效性边缘的敏感性(<.001)。结论 该深度学习模型有可能减少放射科医生的工作量,在不损害敏感性的情况下显著提高特异性。©RSNA,2019 请参阅本期 Kontos 和 Conant 的社论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验