Liu Weikang, Liu Liang, Cui Bin, Cheng Shaobo, Wu Xinyi, Cheng Bin, Miao Tingting, Ren Xue, Chu Ruiyue, Liu Min, Zhao Xiangxiang, Wu Shuyun, Qin Hongwei, Hu Jifan
School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China.
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450000, China.
ACS Nano. 2023 Dec 12;17(23):23626-23636. doi: 10.1021/acsnano.3c06686. Epub 2023 Nov 21.
Spin-orbit coupling (SOC) is the interaction between electron's spin and orbital motion, which could realize a charge-to-spin current conversion and enable an innovative method to switch the magnetization by spin-orbit torque (SOT). Varied techniques have been developed to manipulate and improve the SOT, but the role of the orbit degree of freedom, which should have a crucial bearing on the SOC and SOT, is still confusing. Here, we find that the charge-to-spin current conversion and SOT in WO/(La, Sr)MnO could be produced or eliminated by ionic liquid gating. Through tuning the preferential occupancy of Mn/W- electrons from the in-plane () to out-of-plane () orbit, the SOT damping-like field efficiency is nearly doubled due to the enhanced spin Hall effect and interfacial Rashba-Edelstein effect. These findings not only offer intriguing opportunities to control the SOT for high-efficient spintronic devices but also could be a fundamental step toward spin-orbitronics in the future.
自旋轨道耦合(SOC)是电子自旋与轨道运动之间的相互作用,它可以实现电荷到自旋电流的转换,并提供一种通过自旋轨道扭矩(SOT)来切换磁化强度的创新方法。人们已经开发出各种技术来操控和改善SOT,但轨道自由度的作用仍不明确,而它本应对SOC和SOT起着关键作用。在此,我们发现通过离子液体门控可以产生或消除WO/(La, Sr)MnO中的电荷到自旋电流的转换和SOT。通过将Mn/W电子的优先占据从面内()轨道调整到面外()轨道,由于自旋霍尔效应和界面Rashba-Edelstein效应的增强,SOT类阻尼场效率几乎提高了一倍。这些发现不仅为控制高效自旋电子器件的SOT提供了有趣的机会,而且可能是未来走向自旋轨道电子学的重要一步。