Suppr超能文献

通过 NiFe/CuO/TaN 异质结构中的氧迁移实现轨道电流的电操控。

Electrical Manipulation of Orbital Current Via Oxygen Migration in Ni Fe /CuO /TaN Heterostructure.

机构信息

School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan, 250100, P. R. China.

Key Laboratory for Magnetism and Magnetic Materials, Ministry of Education, Lanzhou University, Lanzhou, 730000, P. R. China.

出版信息

Adv Mater. 2023 Jun;35(25):e2300858. doi: 10.1002/adma.202300858. Epub 2023 Apr 28.

Abstract

The orbital Hall effect and the interfacial Rashba effect provide new approaches to generate orbital current and spin-orbit torque (SOT) efficiently without the use of heavy metals. However, achieving efficient dynamic control of orbital current and SOT in light metal oxides has proven challenging. In this study, it is demonstrated that a sizable magnetoresistance effect related to orbital current and SOT can be observed in Ni Fe /CuO /TaN heterostructures with various CuO oxidization concentrations. The ionic liquid gating induces the migration of oxygen ions, which modulates the oxygen concentration at the Ni Fe /CuO interface, leading to reversible manipulation of the magnetoresistance effect and SOT. The existence of a thick TaN capping layer allows for sophisticated internal oxygen ion reconstruction in the CuO layer, rather than conventional external ion exchange. These results provide a method for the reversible and dynamic manipulation of the orbital current and SOT generation efficiency, thereby advancing the development of spin-orbitronic devices through ionic engineering.

摘要

轨道 Hall 效应和界面 Rashba 效应提供了新的方法来有效地产生轨道电流和自旋轨道扭矩 (SOT),而无需使用重金属。然而,在轻金属氧化物中实现轨道电流和 SOT 的高效动态控制一直具有挑战性。在这项研究中,证明了在具有不同 CuO 氧化浓度的 NiFe/CuO/TaN 异质结构中,可以观察到与轨道电流和 SOT 相关的相当大的磁电阻效应。离子液体门控诱导氧离子的迁移,从而调节 NiFe/CuO 界面处的氧浓度,实现磁电阻效应和 SOT 的可逆操控。厚 TaN 盖帽层的存在允许在 CuO 层中进行复杂的内部氧离子重构,而不是传统的外部离子交换。这些结果为轨道电流和 SOT 产生效率的可逆和动态控制提供了一种方法,从而通过离子工程推进自旋轨道电子器件的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验