Suppr超能文献

定量构效关系(QSAR)研究新型噻唑烷 4-酮衍生物作为有效的抗结核药物。

Quantitative structure activity relationship (QSAR) modeling study of some novel thiazolidine 4-one derivatives as potent anti-tubercular agents.

机构信息

Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603203, India.

出版信息

J Recept Signal Transduct Res. 2023 Jun;43(3):83-92. doi: 10.1080/10799893.2023.2281671. Epub 2024 Jan 11.

Abstract

This study aims to develop a QSAR model for Antitubercular activity. The quantitative structure-activity relationship (QSAR) approach predicted the thiazolidine-4-ones derivative's Antitubercular activity. For the QSAR study, 53 molecules with Antitubercular activity on H37Rv were collected from the literature. Compound structures were drawn by ACD/Labs ChemSketch. The energy minimization of the 2D structure was done using the MM2 force field in Chem3D pro. PaDEL Descriptor software was used to construct the molecular descriptors. QSARINS software was used in this work to develop the 2D QSAR model. A series of thiazolidine 4-one with MIC data were taken from the literature to develop the QSAR model. These compounds were split into a training set (43 compounds) and a test set (10 compounds). The PaDEL software calculated 2300 descriptors for this series of thiazolidine 4-one derivatives. The best predictive Model 4, which has of 0.9092, adj of 0.8950 and LOF parameter of 0.0289 identify a preferred fit. The QSAR study resulted in a stable, predictive, and robust model representing the original dataset. In the QSAR equation, the molecular descriptor of MLFER_S, GATSe2, Shal, and EstateVSA 6 positively correlated with Antitubercular activity. While the SpMAD_Dzs 6 is negatively correlated with Antitubercular activity. The high polarizability, Electronegativities, Surface area contributions and number of Halogen atoms in the thiazolidine 4-one derivatives will increase the Antitubercular activity.

摘要

本研究旨在开发一个用于抗结核活性的定量构效关系(QSAR)模型。定量构效关系(QSAR)方法预测了噻唑烷-4-酮衍生物的抗结核活性。为了进行 QSAR 研究,从文献中收集了 53 种具有抗结核活性的 H37Rv 的噻唑烷-4-酮衍生物。化合物结构通过 ACD/Labs ChemSketch 绘制。在 Chem3D pro 中使用 MM2 力场进行 2D 结构的能量最小化。使用 PaDEL Descriptor 软件构建分子描述符。在这项工作中使用了 QSARINS 软件来开发 2D QSAR 模型。从文献中获取了一系列噻唑烷 4-酮的 MIC 数据,以开发 QSAR 模型。这些化合物被分为训练集(43 个化合物)和测试集(10 个化合物)。PaDEL 软件为这一系列噻唑烷 4-酮衍生物计算了 2300 个描述符。最佳预测模型 4 的 为 0.9092,调整 为 0.8950,LOF 参数为 0.0289,识别出了一个优选拟合。QSAR 研究得到了一个稳定、可预测和稳健的模型,代表了原始数据集。在 QSAR 方程中,分子描述符 MLFER_S、GATSe2、Shal 和 EstateVSA 6 与抗结核活性呈正相关。而 SpMAD_Dzs 6 与抗结核活性呈负相关。噻唑烷-4-酮衍生物的高极化率、电负性、表面积贡献和卤素原子数量将增加抗结核活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验