Molecular Genetics Laboratory, Toyohashi, Japan.
Department of Applied Chemistry and Life Science, Laboratory of Genomics and Photobiology, Toyohashi University of Technology, Toyohashi, Aichi, Japan.
PLoS One. 2023 Nov 22;18(11):e0294571. doi: 10.1371/journal.pone.0294571. eCollection 2023.
Mutagens and oxidative agents damage biomolecules, such as DNA; therefore, detecting genotoxic and oxidative chemicals is crucial for maintaining human health. To address this, we have developed several types of yeast-based reporter assays designed to detect DNA damage and oxidative stress. This study aimed to develop a novel yeast-based assay using a codon-optimized stable or unstable NanoLuc luciferase (yNluc and yNluCP) gene linked to a DNA damage- or oxidative stress-responsive promoter, enabling convenient sensing genotoxicity or oxidative stress, respectively. End-point luciferase assays using yeasts with a chromosomally integrated RNR3 promoter (PRNR3)-driven yNluc gene exhibited high levels of chemiluminescence via NanoLuc luciferase and higher fold induction by hydroxyurea than a multi-copy plasmid-based assay. Additionally, the integrated reporter system detected genotoxicity caused by four different types of chemicals. Oxidants (hydrogen peroxide, tert-butyl hydroperoxide, and menadione) were successfully detected through transient expressions of luciferase activity in real-time luciferase assay using yeasts with a chromosomally integrated TRX2 promoter (PTRX2)-linked yNlucCP gene. However, the luciferase activity was gradually induced in yeasts with a multi-copy reporter plasmid, and their expression profiles were notably distinct from those observed in chromosomally integrated yeasts. The responses of yNlucCP gene against three oxidative chemicals, but not diamide and zinc oxide suspension, were observed using chromosomally integrated reporter yeasts. Given that yeast cells with chromosomally integrated PRNR3-linked yNluc and PTRX2-linked yNlucCP genes express strong chemiluminescence signals and are easily maintained and handled without restrictive nutrient medium, these yeast strains with NanoLuc reporters may prove useful for screening potential genotoxic and oxidative chemicals.
诱变剂和氧化剂会破坏生物分子,如 DNA;因此,检测遗传毒性和氧化应激化学物质对于维护人类健康至关重要。为了解决这个问题,我们开发了几种基于酵母的报告基因检测方法,用于检测 DNA 损伤和氧化应激。本研究旨在开发一种新型基于酵母的检测方法,该方法使用密码子优化的稳定或不稳定的 NanoLuc 荧光素酶(yNluc 和 yNluCP)基因与 DNA 损伤或氧化应激反应启动子相连,分别能够方便地检测遗传毒性或氧化应激。使用带有染色体整合的 RNR3 启动子(PRNR3)驱动的 yNluc 基因的酵母进行终点荧光素酶检测,通过 NanoLuc 荧光素酶显示出高水平的化学发光,并且羟脲诱导的倍数高于多拷贝质粒检测。此外,该整合报告系统检测了四种不同类型化学物质引起的遗传毒性。通过使用带有染色体整合的 TRX2 启动子(PTRX2)连接的 yNlucCP 基因的酵母进行实时荧光素酶检测,成功检测到了氧化剂(过氧化氢、叔丁基过氧化物和维生素 K3)的活性。然而,多拷贝报告质粒中的荧光素酶活性逐渐被诱导,并且它们的表达谱与染色体整合酵母中观察到的明显不同。使用染色体整合报告酵母观察到 yNlucCP 基因对三种氧化化学物质(但不是二酰胺和氧化锌悬浮液)的反应。考虑到带有染色体整合的 PRNR3 连接的 yNluc 和 PTRX2 连接的 yNlucCP 基因的酵母细胞表达强烈的化学发光信号,并且无需限制性营养培养基即可轻松维持和处理,这些带有 NanoLuc 报告基因的酵母菌株可能有助于筛选潜在的遗传毒性和氧化应激化学物质。