Suppr超能文献

为选择性将一氧化碳电还原为甲烷或乙烯而调整一氧化碳和氢的覆盖度

Tailoring the CO and H Coverage for Selective CO Electroreduction to CH or CH.

作者信息

Chen Yangshen, Lyu Naixin, Zhang Junbo, Yan Shuai, Peng Chen, Yang Chao, Lv Ximeng, Hu Cejun, Kuang Min, Zheng Gengfeng

机构信息

Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.

School of Materials Science and Engineering, Fuzhou University, Fujian, 350108, China.

出版信息

Small. 2024 Apr;20(15):e2308004. doi: 10.1002/smll.202308004. Epub 2023 Nov 22.

Abstract

In the electrochemical CO reduction reaction (CORR), the coverages of CO and H intermediates on a catalyst surface are critical for the selective generation of C or C products. In this work, we have synthesized several CuZnMn ternary alloy electrocatalysts, including CuZnMn, CuZnMn, and CuZnMn, by varying the doping compositions of Zn and Mn, which are efficient in binding CO and H adsorbates in the CO electroreduction process, respectively. The increase of H coverage allows to promotion of the CH and H formation, while the increase of the CO coverage facilitates the production of CH and CO. As a result, the CuZnMn catalyst presented a high CO-to-CH partial current density (-418 ± 22 mA cm) with a Faradaic efficiency of 55 ± 2.8%, while the CuZnMn catalyst exhibited a CO-to-CH partial current density (-440 ± 41 mA cm) with a Faradaic efficiency of 58 ± 4.5%. The study suggests a useful strategy for rational design and fabrication of Cu electrocatalysts with different doping for tailoring the reduction products.

摘要

在电化学CO还原反应(CORR)中,催化剂表面上CO和H中间体的覆盖度对于选择性生成C或C产物至关重要。在这项工作中,我们通过改变Zn和Mn的掺杂组成,合成了几种CuZnMn三元合金电催化剂,包括CuZnMn、CuZnMn和CuZnMn,它们分别在CO电还原过程中对结合CO和H吸附物具有高效性。H覆盖度的增加有助于促进CH和H的形成,而CO覆盖度的增加则有利于CH和CO的生成。结果,CuZnMn催化剂呈现出高的CO到CH的分电流密度(-418±22 mA cm),法拉第效率为55±2.8%,而CuZnMn催化剂表现出CO到CH的分电流密度(-440±41 mA cm),法拉第效率为58±4.5%。该研究为合理设计和制备具有不同掺杂的Cu电催化剂以定制还原产物提供了一种有用的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验