Suppr超能文献

通过精确调控氢化和碳-碳偶联实现高选择性电催化将一氧化碳转化为定制产物

Highly Selective Electrocatalytic CO Conversion to Tailored Products through Precise Regulation of Hydrogenation and C-C Coupling.

作者信息

Xia Chenfeng, Wang Xiu, He Chaohui, Qi Ruijuan, Zhu Deyu, Lu Ruihu, Li Fu-Min, Chen Yu, Chen Shenghua, You Bo, Yao Tao, Guo Wei, Song Fei, Wang Ziyun, Xia Bao Yu

机构信息

School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan 430074, China.

School of Chemical Sciences, University of Aucklan, Auckland 1010, New Zealand.

出版信息

J Am Chem Soc. 2024 Jul 24;146(29):20530-20538. doi: 10.1021/jacs.4c07502. Epub 2024 Jul 11.

Abstract

The electrochemical reduction reaction of carbon dioxide (CORR) into valuable products offers notable economic benefits and contributes to environmental sustainability. However, precisely controlling the reaction pathways and selectively converting key intermediates pose considerable challenges. In this study, our theoretical calculations reveal that the active sites with different states of copper atoms (1-3-5-7-9) play a pivotal role in the adsorption behavior of the *CHO critical intermediate. This behavior dictates the subsequent hydrogenation and coupling steps, ultimately influencing the formation of the desired products. Consequently, we designed two model electrocatalysts comprising Cu single atoms and particles supported on CeO. This design enables controlled *CHO intermediate transformation through either hydrogenation with *H or coupling with *CO, leading to a highly selective CORR. Notably, our selective control strategy tunes the Faradaic efficiency from 61.1% for ethylene (CH) to 61.2% for methane (CH). Additionally, the catalyst demonstrated a high current density and remarkable stability, exceeding 500 h of operation. This work not only provides efficient catalysts for selective CORR but also offers valuable insights into tailoring surface chemistry and designing catalysts for precise control over catalytic processes to achieve targeted product generation in CORR technology.

摘要

将二氧化碳电化学还原反应(CORR)转化为有价值的产品具有显著的经济效益,并有助于环境可持续性。然而,精确控制反应途径和选择性转化关键中间体带来了相当大的挑战。在本研究中,我们的理论计算表明,具有不同铜原子状态(1-3-5-7-9)的活性位点在CHO关键中间体的吸附行为中起关键作用。这种行为决定了随后的氢化和偶联步骤,最终影响所需产物的形成。因此,我们设计了两种由负载在CeO上的铜单原子和颗粒组成的模型电催化剂。这种设计能够通过与H氢化或与CO偶联来控制CHO中间体的转化,从而实现高度选择性的CORR。值得注意的是,我们的选择性控制策略将法拉第效率从乙烯(CH)的61.1%调整到甲烷(CH)的61.2%。此外,该催化剂表现出高电流密度和显著的稳定性,运行时间超过500小时。这项工作不仅为选择性CORR提供了高效催化剂,还为定制表面化学和设计催化剂以精确控制催化过程提供了有价值的见解,从而在CORR技术中实现目标产物的生成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验