Laboratory of Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan.
Kansei-Brain Informatics Group, Center for Brain, Mind and Kansei Sciences Research (BMK Center), Hiroshima University, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
NPJ Syst Biol Appl. 2023 Nov 23;9(1):59. doi: 10.1038/s41540-023-00321-5.
The pair-wise observation of the input and target values obtained from the same sample is mandatory in any prediction problem. In the biomarker discovery of Alzheimer's disease (AD), however, obtaining such paired data is laborious and often avoided. Accumulation of amyloid-beta (Aβ) in the brain precedes neurodegeneration in AD, and the quantitative accumulation level may reflect disease progression in the very early phase. Nevertheless, the direct observation of Aβ is rarely paired with the observation of other biomarker candidates. To this end, we established a method that quantitatively predicts Aβ accumulation from biomarker candidates by integrating the mostly unpaired observations via a few-shot learning approach. When applied to 5xFAD mouse behavioral data, the proposed method predicted the accumulation level that conformed to the observed amount of Aβ in the samples with paired data. The results suggest that the proposed model can contribute to discovering Aβ predictability-based biomarkers.
在任何预测问题中,都必须对来自同一样本的输入值和目标值进行两两观察。然而,在阿尔茨海默病(AD)的生物标志物发现中,获取这种配对数据是费力的,并且通常被避免。脑内淀粉样β(Aβ)的积累先于 AD 中的神经退行性变,并且定量积累水平可能反映疾病在非常早期阶段的进展。尽管如此,对 Aβ的直接观察很少与其他生物标志物候选物的观察配对。为此,我们建立了一种方法,通过使用少数镜头学习方法,将大多数非配对的观察结果整合在一起,从而从生物标志物候选物中定量预测 Aβ的积累。当应用于 5xFAD 小鼠行为数据时,所提出的方法预测了与配对数据中观察到的 Aβ量一致的积累水平。结果表明,所提出的模型可以有助于发现基于 Aβ可预测性的生物标志物。