Suppr超能文献

基于多模态信号融合的稳健车载呼吸率检测。

Robust in-vehicle respiratory rate detection using multimodal signal fusion.

机构信息

Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, 38106, Braunschweig, Germany.

Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK.

出版信息

Sci Rep. 2023 Nov 22;13(1):20435. doi: 10.1038/s41598-023-47504-y.

Abstract

Continuous health monitoring in private spaces such as the car is not yet fully exploited to detect diseases in an early stage. Therefore, we develop a redundant health monitoring sensor system and signal fusion approaches to determine the respiratory rate during driving. To recognise the breathing movements, we use a piezoelectric sensor, two accelerometers attached to the seat and the seat belt, and a camera behind the windscreen. We record data from 15 subjects during three driving scenarios (15 min each) city, highway, and countryside. An additional chest belt provides the ground truth. We compare the four convolutional neural network (CNN)-based fusion approaches: early, sensor-based late, signal-based late, and hybrid fusion. We evaluate the performance of fusing for all four signals to determine the portion of driving time and the signal combination. The hybrid algorithm fusing all four signals is most effective in detecting respiratory rates in the city ([Formula: see text]), highway ([Formula: see text]), and countryside ([Formula: see text]). In summary, 60% of the total driving time can be used to measure the respiratory rate. The number of signals used in the multi-signal fusion improves reliability and enables continuous health monitoring in a driving vehicle.

摘要

在私人空间(如汽车)中进行持续健康监测尚未被充分利用,以实现早期疾病检测。因此,我们开发了冗余的健康监测传感器系统和信号融合方法,以确定驾驶过程中的呼吸率。为了识别呼吸运动,我们使用了一个压电传感器、两个安装在座椅和安全带的加速度计,以及挡风玻璃后面的一个摄像头。我们记录了 15 名受试者在城市、高速公路和乡村三种驾驶场景(每种场景持续 15 分钟)下的数据。一个额外的胸部带提供了地面真实情况。我们比较了基于四个卷积神经网络(CNN)的融合方法:早期、基于传感器的晚期、基于信号的晚期和混合融合。我们评估了融合所有四个信号的性能,以确定驾驶时间部分和信号组合。融合所有四个信号的混合算法在检测城市([Formula: see text])、高速公路([Formula: see text])和乡村([Formula: see text])中的呼吸率方面最为有效。总之,60%的总驾驶时间可用于测量呼吸率。多信号融合中使用的信号数量提高了可靠性,并能够在驾驶车辆中进行持续的健康监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19ba/10665475/90d03aa14789/41598_2023_47504_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验