Howard Hughes Medical Institute, Chevy Chase, MD, USA.
Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
Nature. 2023 Dec;624(7992):682-688. doi: 10.1038/s41586-023-06746-6. Epub 2023 Nov 22.
The group II intron ribonucleoprotein is an archetypal splicing system with numerous mechanistic parallels to the spliceosome, including excision of lariat introns. Despite the importance of branching in RNA metabolism, structural understanding of this process has remained elusive. Here we present a comprehensive analysis of three single-particle cryogenic electron microscopy structures captured along the splicing pathway. They reveal the network of molecular interactions that specifies the branchpoint adenosine and positions key functional groups to catalyse lariat formation and coordinate exon ligation. The structures also reveal conformational rearrangements of the branch helix and the mechanism of splice site exchange that facilitate the transition from branching to ligation. These findings shed light on the evolution of splicing and highlight the conservation of structural components, catalytic mechanism and dynamical strategies retained through time in premessenger RNA splicing machines.
内含子 II 核糖核蛋白是一种典型的剪接系统,具有许多与剪接体相似的机制,包括套索内含子的切除。尽管分支在 RNA 代谢中很重要,但对这一过程的结构理解仍然难以捉摸。在这里,我们对沿剪接途径捕获的三个单颗粒低温电子显微镜结构进行了全面分析。它们揭示了指定分支点腺苷的分子相互作用网络,并将关键功能基团定位以催化套索形成和协调外显子连接。这些结构还揭示了分支螺旋的构象重排以及促进从分支到连接转变的剪接位点交换的机制。这些发现揭示了剪接的进化,并强调了在核mRNA 剪接机器中保留的结构成分、催化机制和动力学策略的保守性。