Suppr超能文献

通过整合深度视觉特征和临床信息增强对冈上肌/冈下肌肌腱复合体损伤的预测:一项多中心两轮评估研究

Enhancing prediction of supraspinatus/infraspinatus tendon complex injuries through integration of deep visual features and clinical information: a multicenter two-round assessment study.

作者信息

Alike Yamuhanmode, Li Cheng, Hou Jingyi, Long Yi, Zhang Jinming, Zhou Chuanhai, Zhang Zongda, Zhu Qi, Li Tao, Cao Shinan, Zhang Yuanhao, Wang Dan, Cheng Shuangqin, Yang Rui

机构信息

Department of Orthopaedic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107# Yan Jiang Road West, Guangzhou, 510120, Guangdong Province, People's Republic of China.

Department of Orthopaedic Surgery, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Shanwei, People's Republic of China.

出版信息

Insights Imaging. 2023 Nov 23;14(1):200. doi: 10.1186/s13244-023-01551-1.

Abstract

OBJECTIVE

Develop and evaluate an ensemble clinical machine learning-deep learning (CML-DL) model integrating deep visual features and clinical data to improve the prediction of supraspinatus/infraspinatus tendon complex (SITC) injuries.

METHODS

Patients with suspected SITC injuries were retrospectively recruited from two hospitals, with clinical data and shoulder x-ray radiographs collected. An ensemble CML-DL model was developed for diagnosing normal or insignificant rotator cuff abnormality (NIRCA) and significant rotator cuff tear (SRCT). All patients suspected with SRCT were confirmed by arthroscopy examination. The model's performance was evaluated using sensitivity, specificity, accuracy, and area under the curve (AUC) metrics, and a two-round assessment was conducted to authenticate its clinical applicability.

RESULTS

A total of 974 patients were divided into three cohorts: the training cohort (n = 828), the internal validation cohort (n = 89), and the external validation cohort (n = 57). The CML-DL model, which integrates clinical and deep visual features, demonstrated superior performance compared to individual models of either type. The model's sensitivity, specificity, accuracy, and area under curve (95% confidence interval) were 0.880, 0.812, 0.836, and 0.902 (0.858-0.947), respectively. The CML-DL model exhibited higher sensitivity and specificity compared to or on par with the physicians in all validation cohorts. Furthermore, the assistance of the ensemble CML-DL model resulted in a significant improvement in sensitivity for junior physicians in all validation cohorts, without any reduction in specificity.

CONCLUSIONS

The ensembled CML-DL model provides a solution to help physicians improve the diagnosis performance of SITC injury, especially for junior physicians with limited expertise.

CRITICAL RELEVANCE STATEMENT

The ensembled clinical machine learning-deep learning (CML-DL) model integrating deep visual features and clinical data provides a superior performance in the diagnosis of supraspinatus/infraspinatus tendon complex (SITC) injuries, particularly for junior physicians with limited expertise.

KEY POINTS

  1. Integrating clinical and deep visual features improves diagnosing SITC injuries. 2. Ensemble CML-DL model validated for clinical use in two-round assessment. 3. Ensemble model boosts sensitivity in SITC injury diagnosis for junior physicians.
摘要

目的

开发并评估一种集成深度视觉特征和临床数据的临床机器学习 - 深度学习(CML - DL)模型,以改善对冈上肌/冈下肌肌腱复合体(SITC)损伤的预测。

方法

从两家医院回顾性招募疑似SITC损伤的患者,收集其临床数据和肩部X线片。开发了一种集成CML - DL模型,用于诊断正常或轻微肩袖异常(NIRCA)和显著肩袖撕裂(SRCT)。所有疑似SRCT的患者均通过关节镜检查确诊。使用灵敏度、特异性、准确性和曲线下面积(AUC)指标评估该模型的性能,并进行两轮评估以验证其临床适用性。

结果

共974例患者被分为三个队列:训练队列(n = 828)、内部验证队列(n = 89)和外部验证队列(n = 57)。集成临床和深度视觉特征的CML - DL模型表现出优于任何一种单独类型模型的性能。该模型的灵敏度、特异性、准确性和曲线下面积(95%置信区间)分别为0.880、0.812、0.836和0.902(0.858 - 0.947)。在所有验证队列中,CML - DL模型的灵敏度和特异性与医生相比更高或相当。此外,集成CML - DL模型的辅助使所有验证队列中初级医生的灵敏度显著提高,且特异性未降低。

结论

集成的CML - DL模型为帮助医生提高SITC损伤的诊断性能提供了一种解决方案,特别是对于专业知识有限的初级医生。

关键相关性声明

集成深度视觉特征和临床数据的临床机器学习 - 深度学习(CML - DL)模型在诊断冈上肌/冈下肌肌腱复合体(SITC)损伤方面表现优异,特别是对于专业知识有限的初级医生。

要点

  1. 整合临床和深度视觉特征可改善SITC损伤的诊断。2. 集成CML - DL模型在两轮评估中验证可用于临床。3. 集成模型提高了初级医生对SITC损伤诊断的灵敏度。
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4dc/10667163/309544ddfe69/13244_2023_1551_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验