Suppr超能文献

硅通过调控与木质素生物合成途径和植物激素信号转导相关的基因来抑制玉米对镉的吸收。

Silicon inhibits cadmium uptake by regulating the genes associated with the lignin biosynthetic pathway and plant hormone signal transduction in maize plants.

机构信息

Plant Science Research Unit United States, Department for Agriculture, Agricultural Research Service, Raleigh, NC, USA.

Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan.

出版信息

Environ Sci Pollut Res Int. 2023 Dec;30(59):123996-124009. doi: 10.1007/s11356-023-31044-z. Epub 2023 Nov 23.

Abstract

Cadmium (Cd) contamination in soil poses a severe threat to plant growth and development. In contrast, silicon (Si) has shown promise in enhancing plant resilience under Cd-induced stress. In this study, we conducted an integrated investigation employing morphological studies, gene expression analysis, and metabolomics to unravel the molecular mechanisms underlying Cd tolerance in maize plants. Our results demonstrate that Si biofortification significantly mitigated Cd stress by reducing Cd accumulation in plant tissues, increasing Si content, and enhancing maize biomass in Cd-stressed plants resulted in a substantial enhancement in shoot dry weight (+ 75%) and root dry weight (+ 30%). Notably, Si treatment upregulated key lignin-related genes (TaPAL, TaCAD, Ta4CL, and TaCOMT) and promoted the accumulation of metabolites (sinapyl alcohol, phenylalanine, p-coumaryl alcohol, cafeyl alcohol, and coniferaldehyde) essential for cell wall strength, particularly under Cd stress conditions. Si application enriched the signal transduction by hormones and increased resistance by induction of biosynthesis genes (TaBZR1, TaLOX3, and TaNCDE1) and metabolites (brassinolide, abscisic acid, and jasmonate) in the roots and leaves under Cd stress. Furthermore, our study provides a comprehensive view of the intricate molecular crosstalk between Si, Cd stress, and plant hormonal responses. We unveil a network of genetic and metabolic interactions that culminate in a multifaceted defense system, enabling maize plants to thrive even in the presence of Cd-contaminated soil. This knowledge not only advances our understanding of the protective role of Si but also highlights the broader implications for sustainable agricultural practices. By harnessing the insights gained from this research, we may pave the way for innovative strategies to fortify crops against environmental stressors, ultimately contributing to the goal of food security in an ever-changing world. In summary, our research offers valuable insights into the protective mechanisms facilitated by Si, which enhance plants' ability to withstand environmental stress, and holds promise for future applications in sustainable agriculture.

摘要

土壤中的镉(Cd)污染对植物的生长和发育构成了严重威胁。相比之下,硅(Si)已被证明在增强植物对 Cd 诱导胁迫的适应能力方面具有潜力。在这项研究中,我们采用形态学研究、基因表达分析和代谢组学进行综合研究,揭示了玉米植株耐受 Cd 的分子机制。我们的研究结果表明,硅的生物强化作用通过降低植物组织中的 Cd 积累、增加 Si 含量以及提高 Cd 胁迫下玉米生物量,显著减轻了 Cd 胁迫。结果表明,硅处理显著增加了地上部干重(+75%)和根部干重(+30%)。值得注意的是,Si 处理上调了关键木质素相关基因(TaPAL、TaCAD、Ta4CL 和 TaCOMT),并促进了代谢物(松柏醇、苯丙氨酸、对香豆醇、咖啡醇和松柏醛)的积累,这些代谢物对细胞壁的强度至关重要,特别是在 Cd 胁迫条件下。Si 处理通过激素信号转导富集,并通过诱导生物合成基因(TaBZR1、TaLOX3 和 TaNCDE1)和代谢物(油菜素内酯、脱落酸和茉莉酸)在根和叶中增强了对 Cd 胁迫的抗性。此外,我们的研究提供了 Si、Cd 胁迫和植物激素响应之间复杂分子相互作用的综合观点。我们揭示了一个遗传和代谢相互作用的网络,最终形成一个多方面的防御系统,使玉米植株即使在 Cd 污染土壤中也能茁壮成长。这不仅加深了我们对 Si 保护作用的理解,还突出了其对可持续农业实践的更广泛影响。通过利用从这项研究中获得的见解,我们可能为强化作物抵御环境胁迫的创新策略铺平道路,最终为不断变化的世界中的粮食安全目标做出贡献。总之,我们的研究为 Si 增强植物耐受环境胁迫的能力提供了有价值的见解,并为可持续农业的未来应用提供了前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验