Desai Vishv, Panchal Manthan, Parikh Jaymin, Modi Krunal, Vora Manoj, Panjwani Falak, Jain Vinod Kumar
Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
Department of Chemistry, Silver Oak Institute of Science, Silver Oak University, Ahmedabad, Gujarat, India.
J Fluoresc. 2025 Jan;35(1):121-130. doi: 10.1007/s10895-023-03505-8. Epub 2023 Nov 23.
This research presents the application of Dinaphthoylated Oxacalix[4]arene (DNOC) as a novel fluorescent receptor for the purpose of selectively detecting nitroaromatic compounds (NACs). The characterization of DNOC was conducted through the utilization of spectroscopic methods, including H-NMR, C-NMR, and ESI-MS. The receptor demonstrated significant selectivity in acetonitrile towards several nitroaromatic analytes, such as MNA, 2,4-DNT, 2,3-DNT, 1,3-DNB, 2,6-DNT, and 4-NT. This selectivity was validated by the measurement of emission spectra. The present study focuses on the examination of binding constants, employing Stern-Volmer analysis, as well as the determination of the lowest detection limit (3σ/Slope) and fluorescence quenching. These investigations aim to provide insights into the inclusion behavior of DNOC with each of the six analytes under fluorescence spectra investigation. Furthermore, the selectivity trend of the ligand DNOC for NAC detection is elucidated using Density Functional Theory (DFT) calculations conducted using the Gaussian 09 software. The examination of energy gaps existing between molecular orbitals, namely the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), provides a valuable understanding of electron-transfer processes and electronic interactions. Smaller energy gaps are indicative of heightened selectivity resulting from favorable electron-transfer processes, whereas bigger gaps suggest less selectivity attributable to weaker electronic contacts. This work integrates experimental and computational methodologies to provide a full understanding of the selective binding behavior of DNOC. As a result, DNOC emerges as a viable chemical sensor for detecting nitroaromatic explosives.
本研究介绍了二萘酰化氧杂杯[4]芳烃(DNOC)作为一种新型荧光受体用于选择性检测硝基芳香族化合物(NACs)的应用。通过使用光谱方法对DNOC进行表征,包括氢核磁共振(H-NMR)、碳核磁共振(C-NMR)和电喷雾电离质谱(ESI-MS)。该受体在乙腈中对几种硝基芳香族分析物表现出显著的选择性,如间硝基苯甲醚(MNA)、2,4-二硝基甲苯(2,4-DNT)、2,3-二硝基甲苯(2,3-DNT)、1,3-二硝基苯(1,3-DNB)、2,6-二硝基甲苯(2,6-DNT)和对硝基甲苯(4-NT)。通过发射光谱的测量验证了这种选择性。本研究重点考察结合常数,采用斯特恩-沃尔默分析,以及最低检测限(3σ/斜率)的测定和荧光猝灭。这些研究旨在深入了解在荧光光谱研究下DNOC与六种分析物中每一种的包合行为。此外,使用高斯09软件进行密度泛函理论(DFT)计算,阐明了配体DNOC对NAC检测的选择性趋势。对分子轨道之间存在的能隙进行研究,即最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO),有助于深入了解电子转移过程和电子相互作用。较小的能隙表明由于有利的电子转移过程导致选择性增强,而较大的能隙则表明由于较弱的电子接触导致选择性较低。这项工作整合了实验和计算方法,以全面了解DNOC的选择性结合行为。结果表明,DNOC是一种用于检测硝基芳香族炸药的可行化学传感器。