Suppr超能文献

仅使用肌电信号的基于深度学习的步行环境转换识别算法。

Deep Learning-Based Identification Algorithm for Transitions Between Walking Environments Using Electromyography Signals Only.

作者信息

Kim Pankwon, Lee Jinkyu, Jeong Jiyoung, Shin Choongsoo S

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:358-365. doi: 10.1109/TNSRE.2023.3336360. Epub 2024 Jan 19.

Abstract

Although studies on terrain identification algorithms to control walking assistive devices have been conducted using sensor fusion, studies on transition classification using only electromyography (EMG) signals have yet to be conducted. Therefore, this study was to suggest an identification algorithm for transitions between walking environments based on the entire EMG signals of selected lower extremity muscles using a deep learning approach. The muscle activations of the rectus femoris, vastus medialis and lateralis, semitendinosus, biceps femoris, tibialis anterior, soleus, medial and lateral gastrocnemius, flexor hallucis longus, and extensor digitorum longus of 27 subjects were measured while walking on flat ground, upstairs, downstairs, uphill, and downhill and transitioning between these walking surfaces. An artificial neural network (ANN) was used to construct the model, taking the entire EMG profile during the stance phase as input, to identify transitions between walking environments. The results show that transitioning between walking environments, including continuously walking on a current terrain, was successfully classified with high accuracy of 95.4 % when using all muscle activations. When using a combination of muscle activations of the knee extensor, ankle extensor, and metatarsophalangeal flexor group as classifying parameters, the classification accuracy was 90.9 %. In conclusion, transitioning between gait environments could be identified with high accuracy with the ANN model using only EMG signals measured during the stance phase.

摘要

尽管已经利用传感器融合技术开展了关于控制步行辅助设备的地形识别算法的研究,但仅使用肌电图(EMG)信号进行过渡分类的研究尚未开展。因此,本研究旨在基于选定下肢肌肉的全部EMG信号,采用深度学习方法,提出一种用于步行环境之间过渡的识别算法。在27名受试者于平地上行走、上楼梯、下楼梯、上坡和下坡以及在这些行走表面之间过渡时,测量了股直肌、股内侧肌和股外侧肌、半腱肌、股二头肌、胫骨前肌、比目鱼肌、腓肠肌内侧头和外侧头、拇长屈肌以及趾长伸肌的肌肉激活情况。使用人工神经网络(ANN)构建模型,将站立阶段的全部EMG特征作为输入,以识别步行环境之间的过渡。结果表明,当使用所有肌肉激活情况时,包括在当前地形上持续行走在内的步行环境之间的过渡能够以95.4%的高精度成功分类。当使用膝伸肌、踝伸肌和跖趾屈肌组的肌肉激活组合作为分类参数时,分类准确率为90.9%。总之,仅使用站立阶段测量的EMG信号,利用ANN模型能够高精度地识别步态环境之间的过渡。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验