Chong Wei-Kean, Ng Boon-Junn, Lee Yong Jieh, Tan Lling-Lling, Putri Lutfi Kurnianditia, Low Jingxiang, Mohamed Abdul Rahman, Chai Siang-Piao
Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
Department of Applied Chemistry, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui, 230026, PR China.
Nat Commun. 2023 Nov 24;14(1):7676. doi: 10.1038/s41467-023-43331-x.
Engineering an efficient semiconductor to sustainably produce green hydrogen via solar-driven water splitting is one of the cutting-edge strategies for carbon-neutral energy ecosystem. Herein, a superhydrophilic green hollow ZnInS (gZIS) was fabricated to realize unassisted photocatalytic overall water splitting. The hollow hierarchical framework benefits exposure of intrinsically active facets and activates inert basal planes. The superhydrophilic nature of gZIS promotes intense surface water molecule interactions. The presence of vacancies within gZIS facilitates photon energy utilization and charge transfer. Systematic theoretical computations signify the defect-induced charge redistribution of gZIS enhancing water activation and reducing surface kinetic barriers. Ultimately, the gZIS could drive photocatalytic pure water splitting by retaining close-to-unity stability for a full daytime reaction with performance comparable to other complex sulfide-based materials. This work reports a self-activated, single-component cocatalyst-free gZIS with great exploration value, potentially providing a state-of-the-art design and innovative aperture for efficient solar-driven hydrogen production to achieve carbon-neutrality.
设计一种高效的半导体,通过太阳能驱动的水分解可持续地生产绿色氢气,是碳中性能源生态系统的前沿策略之一。在此,制备了一种超亲水绿色空心ZnInS(gZIS)以实现无辅助光催化全水分解。空心分级结构有利于本征活性面的暴露并激活惰性基面。gZIS的超亲水性质促进了强烈的表面水分子相互作用。gZIS中空位的存在有利于光子能量利用和电荷转移。系统的理论计算表明,gZIS的缺陷诱导电荷再分布增强了水的活化并降低了表面动力学势垒。最终,gZIS可以驱动光催化纯水分解,在整个白天反应中保持接近100%的稳定性,其性能与其他复杂的硫化物基材料相当。这项工作报道了一种具有巨大探索价值的自激活、无单组分助催化剂的gZIS,有可能为高效太阳能驱动制氢实现碳中和提供一种先进的设计和创新途径。