Zhang Shuqu, Zhang Zhifeng, Si Yanmei, Li Bing, Deng Fang, Yang Lixia, Liu Xia, Dai Weili, Luo Shenglian
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Jiangxi Province, People's Republic of China.
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong Province, People's Republic of China.
ACS Nano. 2021 Sep 28;15(9):15238-15248. doi: 10.1021/acsnano.1c05834. Epub 2021 Aug 19.
It is a challenge to regulate charge flow synergistically at the atomic level to modulate gradient hydrogen migration (H migration) for boosting photocatalytic hydrogen evolution. Herein, a self-adapting S vacancy (Vs) induced with atomic Cu introduction into ZnInS nanosheets was fabricated elaborately, which can tune charge separation and construct a gradient channel for H migration. Detailed experimental results and theoretical simulations uncover the behavior mechanism of Vs generation with Cu introduction after substituting a Zn atom tendentiously. Cu-S bond shrinkage and Zn-S bond distortion are presented around Vs areas. Besides, Vs induced by Cu introduction lowers the internal electric field to restrain electron transmission between layers, which are enriched on the Vs area because of the lower surface electrostatic potential. Atomic Cu and Vs show a synergistic effect for regulating regional charge separation due to the Cu dopant being a hole trap and Vs being an electron trap. The channels for H migration with gradient Δ are constructed by different S atom sites, which are modulated by Vs. Gradient H migration driven by a photothermal effect occurs on an identical surface without striding across a heterogeneous interface, which is a valid pathway with lower resistance for boosting H release. Ultimately, 5 mol % Cu confined in ZnInS nanosheets achieves an optimum photocatalytic hydrogen evolution activity of 9.8647 mmol g h, which is 14.8 times higher than 0.6640 mmol g h for ZnInS, and apparent quantum efficiency reaches 37.11% at 420 nm. This work demonstrates the behavior mechanism of atomic substitution and provides cognition for hydrogen evolution mechanism deeply.
在原子水平上协同调节电荷流动以调控梯度氢迁移(H迁移)从而促进光催化析氢是一项挑战。在此,精心制备了通过向ZnInS纳米片中引入原子Cu诱导产生的自适应S空位(Vs),其能够调节电荷分离并构建H迁移的梯度通道。详细的实验结果和理论模拟揭示了在倾向于取代一个Zn原子后,随着Cu的引入Vs产生的行为机制。在Vs区域周围出现了Cu-S键收缩和Zn-S键畸变。此外,Cu引入诱导产生的Vs降低了内部电场以抑制层间电子传输,由于较低的表面静电势,电子在Vs区域富集。由于Cu掺杂剂是一个空穴陷阱而Vs是一个电子陷阱,原子Cu和Vs在调节区域电荷分离方面表现出协同效应。具有梯度Δ的H迁移通道由不同的S原子位点构建,这些位点由Vs调节。由光热效应驱动的梯度H迁移在同一表面上发生,而无需跨越异质界面,这是促进H释放的具有较低电阻的有效途径。最终,限制在ZnInS纳米片中的5 mol% Cu实现了9.8647 mmol g h的最佳光催化析氢活性,这是ZnInS的0.6640 mmol g h的14.8倍,并且在420 nm处表观量子效率达到37.11%。这项工作揭示了原子取代的行为机制,并为析氢机制提供了深入的认识。