Suppr超能文献

利用社区流动性、气候和空气污染数据建模急诊就诊量的变化。

Modelling variations of emergency attendances using data on community mobility, climate and air pollution.

机构信息

Intensive Care Unit, Department of Internal Medicine I, University Hospital of Wuerzburg, University of Wuerzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany.

Departments of Emergency and Acute Medicine, Campus Mitte and Virchow-Klinikum, Charite-Universitätsmedizin Berlin, Berlin, Germany.

出版信息

Sci Rep. 2023 Nov 23;13(1):20595. doi: 10.1038/s41598-023-47857-4.

Abstract

Air pollution is associated with morbidity and mortality worldwide. We investigated the impact of improved air quality during the economic lockdown during the SARS-Cov2 pandemic on emergency room (ER) admissions in Germany. Weekly aggregated clinical data from 33 hospitals were collected in 2019 and 2020. Hourly concentrations of nitrogen and sulfur dioxide (NO2, SO2), carbon and nitrogen monoxide (CO, NO), ozone (O3) and particulate matter (PM10, PM2.5) measured by ground stations and meteorological data (ERA5) were selected from a 30 km radius around the corresponding ED. Mobility was assessed using aggregated cell phone data. A linear stepwise multiple regression model was used to predict ER admissions. The average weekly emergency numbers vary from 200 to over 1600 cases (total n = 2,216,217). The mean maximum decrease in caseload was 5 standard deviations. With the enforcement of the shutdown in March, the mobility index dropped by almost 40%. Of all air pollutants, NO2 has the strongest correlation with ER visits when averaged across all departments. Using a linear stepwise multiple regression model, 63% of the variation in ER visits is explained by the mobility index, but still 6% of the variation is explained by air quality and climate change.

摘要

空气污染与全球的发病率和死亡率有关。我们研究了在 SARS-CoV2 大流行期间经济封锁期间空气质量改善对德国急诊室(ER)入院人数的影响。2019 年和 2020 年,从德国 33 家医院每周收集汇总的临床数据。选择了半径为 30 公里范围内的地面站测量的氮和二氧化硫(NO2、SO2)、碳和一氧化氮(CO、NO)、臭氧(O3)和颗粒物(PM10、PM2.5)浓度以及气象数据(ERA5)。使用聚合手机数据评估移动性。使用线性逐步多元回归模型预测急诊室入院人数。每周平均急诊人数从 200 例到超过 1600 例不等(总 n = 2,216,217)。病例数的平均最大降幅为 5 个标准差。随着 3 月封锁的实施,移动指数下降了近 40%。在所有空气污染物中,NO2 与所有科室的急诊就诊次数相关性最强。使用线性逐步多元回归模型,移动指数解释了急诊就诊次数变化的 63%,但空气质量和气候变化仍解释了 6%的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cefc/10667222/5c076194fee8/41598_2023_47857_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验