Suppr超能文献

具有微相分离的介电凝胶用于宽范围和自阻尼压力传感

Dielectric Gels with Microphase Separation for Wide-Range and Self-Damping Pressure Sensing.

作者信息

Zhang Changgeng, Wang Zhenwu, Zhu He, Zhang Qi, Zhu Shiping

机构信息

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, P. R. China.

Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.

出版信息

Adv Mater. 2024 Jan;36(4):e2308520. doi: 10.1002/adma.202308520. Epub 2023 Dec 4.

Abstract

Omnipresent vibrations pose a significant challenge to flexible pressure sensors by inducing unstable output signals and curtailing their operational lifespan. Conventional soft sensing materials possess adequate elasticity but prove inadequate in countering vibrations. Moreover, the utilization of conventional highly-damping materials for sensing is challenging due to their substantial hysteresis. To tackle this dilemma, dielectric gels with controlled in situ microphase separation have been developed, leveraging the miscibility disparity between copolymers and solvents. The resulting gels exhibit exceptional compression stress, remarkable dielectric constant, and exceptional damping capabilities. Furthermore, flexible pressure sensors based on these microphase-separated gels show a wide detection range and low detection limit, more importantly, excellent sensing performance on vibrating surfaces. This work offers high potentials for applying flexible pressure sensors in complex practical scenarios and opens up new avenues for applications in soft electronics, biomimetic robots, and intelligent sensing.

摘要

无处不在的振动对柔性压力传感器构成了重大挑战,因为它会导致输出信号不稳定并缩短其使用寿命。传统的软传感材料具有足够的弹性,但在抵抗振动方面却显得不足。此外,由于传统的高阻尼材料存在较大的滞后现象,将其用于传感具有挑战性。为了解决这一难题,人们开发了具有可控原位微相分离的介电凝胶,利用了共聚物和溶剂之间的混溶性差异。由此产生的凝胶表现出优异的压缩应力、显著的介电常数和出色的阻尼能力。此外,基于这些微相分离凝胶的柔性压力传感器具有宽检测范围和低检测限,更重要的是,在振动表面具有出色的传感性能。这项工作为柔性压力传感器在复杂实际场景中的应用提供了巨大潜力,并为软电子、仿生机器人和智能传感等领域的应用开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验