Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.
Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland.
Mol Ecol. 2024 Jan;33(2):e17206. doi: 10.1111/mec.17206. Epub 2023 Nov 23.
In the face of habitat loss, preserving functional connectivity is essential to maintain genetic diversity and the demographic dynamics required for the viability of biotic communities. This requires knowledge of the dispersal behaviour of target species, which can be modelled as kernels, or probability density functions of dispersal distances at increasing geographic distances. We present an integrative approach to investigate the relationships between genetic connectivity and demographic parameters in organisms with low vagility focusing on five syntopic pond-breeding amphibians. We genotyped 1056 individuals of two anuran and three urodele species (1732-3913 SNPs per species) from populations located in a landscape comprising 64 ponds to characterize fine-scale genetic structure in a comparative framework, and combined these genetic data with information obtained in a previous 2-year capture-mark-recapture (CMR) study. Specifically, we contrasted graphs reconstructed from genomic data with connectivity graphs based on dispersal kernels and demographic information obtained from CMR data from previous studies, and assessed the effects of population size, population density, geographical distances, inverse movement probabilities and the presence of habitat patches potentially functioning as stepping stones on genetic differentiation. Our results show a significant effect of local population sizes on patterns of genetic differentiation at small spatial scales. In addition, movement records and cluster-derived kernels provide robust inferences on most likely dispersal paths that are consistent with genomic inferences on genetic connectivity. The integration of genetic and CMR data holds great potential for understanding genetic connectivity at spatial scales relevant to individual organisms, with applications for the implementation of management actions at the landscape level.
面对栖息地丧失,保持功能连通性对于维持生物群落的遗传多样性和生存所需的人口动态至关重要。这需要了解目标物种的扩散行为,可以将其建模为核,即随着地理距离的增加,扩散距离的概率密度函数。我们提出了一种综合方法,研究了低迁移性生物中遗传连通性与人口参数之间的关系,重点是五种同域的池塘繁殖两栖动物。我们对来自景观中 64 个池塘的种群的 1056 个个体(每个物种 1732-3913 个 SNP)进行了基因分型,以在比较框架中描述精细尺度的遗传结构,并将这些遗传数据与先前 2 年的捕获-标记-再捕获(CMR)研究中获得的信息相结合。具体来说,我们对比了基于基因组数据重建的图与基于扩散核和从先前 CMR 数据中获得的人口统计信息的连通图,并评估了种群大小、种群密度、地理距离、反向运动概率以及存在可能作为踏脚石的栖息地斑块对遗传分化的影响。我们的结果表明,局部种群大小对小空间尺度上遗传分化模式有显著影响。此外,移动记录和聚类衍生的核为最可能的扩散路径提供了可靠的推断,这些推断与基因组对遗传连通性的推断一致。遗传和 CMR 数据的整合对于理解与个体生物相关的空间尺度上的遗传连通性具有很大的潜力,可应用于景观层面的管理措施的实施。